METHOD OF OPERATING A NUCLEAR POWER PLANT

    公开(公告)号:US20230111998A1

    公开(公告)日:2023-04-13

    申请号:US17950830

    申请日:2022-09-22

    Inventor: David LEBLANC

    Abstract: The present relates to the integration of the primary functional elements of graphite moderator and reactor vessel and/or primary heat exchangers and/or control rods into an integral molten salt nuclear reactor (IMSR). Once the design life of the IMSR is reached, for example, in the range of 3 to 10 years, it is disconnected, removed and replaced as a unit. The spent IMSR functions as the medium or long term storage of the radioactive graphite and/or heat exchangers and/or control rods and/or fuel salt contained in the vessel of the IMSR. The present also relates to a nuclear reactor that has a buffer salt surrounding the nuclear vessel. During normal operation of the nuclear reactor, the nuclear reactor operates at a temperature that is lower than the melting point of the buffer salt and the buffer salt acts as a thermal insulator. Upon loss of external cooling, the temperature of the nuclear reactor increases and melts the buffer salt, which can then transfer heat from the nuclear core to a cooled containment vessel.

    POWER PLANT SYSTEM
    4.
    发明申请

    公开(公告)号:US20220084697A1

    公开(公告)日:2022-03-17

    申请号:US17407529

    申请日:2021-08-20

    Abstract: The power plant system includes a molten salt reactor assembly, a thermocline unit, phase change heat exchangers, and process heat systems. The thermocline unit includes an insulated tank, an initial inlet, a plurality of zone outlets, and a plurality of gradient zones corresponding to each zone outlet and being stacked in the tank. Each gradient zone has a molten salt portion at a portion temperature corresponding to the molten salt supply from the molten salt reactor being stored in the tank and stratified. The molten salt portions at higher portion temperatures generate thermal energy for process heat systems that require higher temperatures, and molten salt portions at lower portion temperatures generate thermal energy for process heat systems that require lower temperatures. The system continuously pumps the molten salt supply in controlled rates to deliver the heat exchange fluid supply to perform work in the corresponding particular process heat system.

    Molten salt reactor core with reflector

    公开(公告)号:US10276269B2

    公开(公告)日:2019-04-30

    申请号:US15610182

    申请日:2017-05-31

    Abstract: While the described systems can include any suitable component, in some cases, they include a graphite reactor core defining an internal space that, in some cases, houses one or more fuel wedges, where each wedge defines one or more fuel channels that extend from a first end to a second end of the wedge. In some cases, one or more of the fuel wedges comprise multiple wedge sections that are coupled together end to end and/or in any other suitable manner. In some cases, one or more alignment pins also extend between two sections of a fuel wedge to align the sections. In some cases, one or more seals are also disposed between two sections of a fuel wedge. Thus, in some cases, the reactor core can be relatively long (e.g., to be a pipeline reactor). In some cases, the reactor core is also disposed within a graphite reflector. Other implementations are described.

    METHOD OF OPERATING A NUCLEAR POWER PLANT
    8.
    发明申请

    公开(公告)号:US20190057783A1

    公开(公告)日:2019-02-21

    申请号:US16037636

    申请日:2018-07-17

    Inventor: David LEBLANC

    Abstract: The present relates to the integration of the primary functional elements of graphite moderator and reactor vessel and/or primary heat exchangers and/or control rods into an integral molten salt nuclear reactor (IMSR). Once the design life of the IMSR is reached, for example, in the range of 3 to 10 years, it is disconnected, removed and replaced as a unit. The spent IMSR functions as the medium or long term storage of the radioactive graphite and/or heat exchangers and/or control rods and/or fuel salt contained in the vessel of the IMSR. The present also relates to a nuclear reactor that has a buffer salt surrounding the nuclear vessel. During normal operation of the nuclear reactor, the nuclear reactor operates at a temperature that is lower than the melting point of the buffer salt and the buffer salt acts as a thermal insulator. Upon loss of external cooling, the temperature of the nuclear reactor increases and melts the buffer salt, which can then transfer heat from the nuclear core to a cooled containment vessel.

    System and method for a commercial spent nuclear fuel repository turning heat and gamma radiation into value

    公开(公告)号:US10210961B2

    公开(公告)日:2019-02-19

    申请号:US13469846

    申请日:2012-05-11

    Abstract: A system and a method for a commercial nuclear repository that turns heat and gamma radiation from spent nuclear fuel into a valuable revenue stream. Gamma radiation from the spent nuclear fuel of the repository may be used to irradiate and sterilize food and other substances. Gamma radiation may also be used to improve the properties of target substances. Additionally, heat decay from the spent nuclear fuel of the repository may be harnessed to heat materials or fluids. The heated fluids may be used, for instance, to produce steam that may make electricity. The heating of working fluids for use in processes, such as heated fluid streams for fermentation or industrial heating, may be transported out of the repository and co-mingled with other heat input, or other fluids.

Patent Agency Ranking