Abstract:
A manufacturing method for an electron source according to the present disclosure includes steps of: (A) cutting out a chip from a block of an electron emission material, (B) fixing a first end portion of the chip to a distal end of a support needle, and (C) sharpening a second end portion of the chip. The step (A) includes forming first and second grooves which constitute first and second surfaces of the chip in the block by irradiating a surface of the block with an ion beam. The first end portion of the chip includes the first surface and the second surface with the surfaces forming an angle α of 10 to 90°. The step (B) includes forming a joint between the distal end of the support needle and the first end portion of the chip.
Abstract:
The present invention provides a simpler method for sharpening a tip of an emitter. In addition, the present invention provides an emitter including a nanoneedle made of a single crystal material, an emitter including a nanowire made of a single crystal material such as hafnium carbide (HfC), both of which stably emit electrons with high efficiency, and an electron gun and an electronic device using any one of these emitters. A method for manufacturing the emitter according to an embodiment of the present invention comprises processing a single crystal material in a vacuum using a focused ion beam to form an end of the single crystal material, through which electrons are to be emitted, into a tapered shape, wherein the processing is performed in an environment in which a periphery of the single crystal material fixed to a support is opened.
Abstract:
An ion source for forming a plasma has a cathode with a cavity and a cathode surface defining a cathode step. A filament is disposed within the cavity, and a cathode shield has a cathode shield surface at least partially encircling the cathode surface. A cathode gap is defined between the cathode surface and the cathode shield surface, where the cathode gap defines a tortured path for limiting travel of the plasma through the gap. The cathode surface can have a stepped cylindrical surface defined by a first cathode diameter and a second cathode diameter, where the first cathode diameter and second cathode diameter differ from one another to define the cathode step. The stepped cylindrical surface can be an exterior surface or an interior surface. The first and second cathode diameters can be concentric or axially offset.
Abstract:
An electron generating apparatus includes a filament, a power supply configured to supply power to the filament so as to make the filament emit an electron, and a controller configured to repeatedly detect a value having a correlation with power supplied from the power supply to the filament, determine whether a state of the filament satisfies a notification condition, by using a plurality of detected values, and perform notification when the state satisfies the notification condition.
Abstract:
A ring-shaped electrode includes a silicon ring body, and a cover body joined to at least a part of a surface of the ring body via a joining part, and having a better plasma resistance than silicon. The joining part has a heat resistance to withstand a temperature of at least 150° C., melts at 700° C. or below, and contains boron oxide.
Abstract:
The invention relates to a device for curing inner linings of pipelines introduced into them in the form of lining tubes impregnated with a resin. The device includes metal three-piece monolithic body (52) both of the two extreme cylindrical portions (53 and 54) of which have a diameter (Ø1) larger than the diameter (Ø1′) of its middle cylindrical portion (56), whereas all components of the body are connected with each other detachably, and both of the two extreme portions (53 and 54) are provided on their cylindrical circumferences with a dozen or so longitudinal ribs (65) each distributed symmetrically on them along the circumferences and having an identical thickness (U) and height (V), and moreover, the ribs are provided with circumferential slit-shaped recesses (66) situated opposite from each other and oriented perpendicularly to horizontal axis (67) of the device forming thus profiles functioning as radiators (68) composed of individual segments (69) separated from each other with elongated recesses with an dilation angle (α) and with crosswise circumferential slit-shaped recesses (66), whereas the middle portion (56) of the body on its circumference with diameter (Ø1′) has also a dozen or so flat facets-chords (74) evenly distributed along the circumference and separated from each other with radially oriented slit-shaped recesses (75) ending on solid core (64) of this portion of the body (52) in which power leads (80) are guided supplying electric current to LEDs (79) and to the front camera unit (40), said recesses forming profiled figures functioning as radiators (76) flat facets (74) of which are connected detachably with plastic strip-shaped plates (78) with LEDs (79) installed in them, and moreover, both of the two extreme portions (53 and 54) of the body (52) are provided with round axial holes (61) ending with bevelled chamfers (62) forming annular slots (63) situated between them and the solid core (64) of the middle portion (56) of the body, whereas the axial holes (61) are coaxial with holes (59) of both of the two profiled shields (58) connected detachably with outer faces of both of the two extreme portions (53 and 54) of the body (52) of the device.
Abstract:
Provided herein are electron emission devices and device components for optical, electronic and optoelectronic devices, including cantilever-based MEMS and NEMS instrumentation. Devices of certain aspects of the invention integrate a dielectric, pyroelectric, piezoelectric or ferroelectric film on the receiving surface of a substrate having an integrated actuator, such as a temperature controller or mechanical actuator, optionally in the form of a cantilever device having an integrated heater-thermometer. Also provided are methods of making and using electron emission devices for a range of applications including sensing and imaging technology.
Abstract:
A laser sustained plasma light source having a cell with a gas volume contained within the cell. At least one laser is directed into the gas volume, for sustaining a plasma within the gas volume, which plasma produces a light. Means are provided for continuously providing the gas volume to the plasma in a laminar flow. A reflector collects the light and provides the light to a desired location.
Abstract:
A lighting apparatus, comprising: a light source that emits light; a hollow heat-transfer member including an outer surface on which the light source is disposed; and a light guiding member that covers the light source and at least part of the outer surface along the outer surface.
Abstract:
The proposed illuminator relates to white-light lamps based on LEDs with remote phosphor converters. The illuminator comprises a heat removing base with a radiation output opening, and the LEDs secured near the periphery of the opening, with, arranged in series at a distance from the LEDs, a concave phosphor converter layer, wherein the layer's concavity is oriented towards the LED's and the opening. White light formed as mix of reflected LED's radiation and phosphor's radiation exits via the opening, while white light formed as mix of LED's radiation passing through the layer and phosphor's radiation exits through the layer. The layer may have the form of a truncated ellipsoid of revolution, in particular a sphere, or a paraboloid, with a main axis perpendicular to the plane of the opening, or a cylinder truncated by the plane of the opening.