Abstract:
In some embodiments, an electrodeless lamp may be provided. The lamp may include an outer tube and an inner tube. The inner tube may be sealed to the outer tube to define a sealed space in which a gas may be contained. The gas may be configured to emit electromagnetic radiation when an electromagnetic field is applied thereto.
Abstract:
A high-pressure discharge lamp having a single socket, comprising: a discharge vessel (100) having two opposite sealed ends (120, 130) and a discharge chamber (110) arranged between the sealed ends (120, 130), a first sealed end (120) extending into a lamp base (400) and the second sealed end (130) protruding out of the lamp base (400), a first electrode (20) which is fixed in the first sealed end (120) of the discharge vessel (100) and has an end on the discharge side extending into the discharge chamber (110), a second electrode (30) which is fixed in the second sealed end (130) of the discharge vessel (100) and has an end on the discharge side extending into the discharge chamber; and (110), a base flange (420) arranged on the lamp base (400) and defining a plane (421) which is usable for adjusting the high-pressure discharge lamp in an optical system wherein for the distance A from the end of the first electrode (20) on the discharge side to the plane (421) of the base flange (420) and for the distance B from the end of the second electrode (30) on the discharge side to the plane (421) of the base flange (420), the following relation applies: 15.0 mm ≤ A + B 2 ≤ 27.0 mm .
Abstract translation:一种具有单个插座的高压放电灯,包括:具有两个相对密封端(120,130)和布置在所述密封端(120,130)之间的放电室(110)的放电容器(100),第一密封 延伸到灯座(400)的端部(120)和从灯座(400)突出的第二密封端(130);固定在放电的第一密封端(120)中的第一电极(20) 容器(100),并且在排出侧具有延伸到排出室(110)中的端部;第二电极(30),其固定在放电容器(100)的第二密封端(130)中并且具有端部 放电侧延伸到放电室; 和(110),布置在所述灯座(400)上并限定可用于调节光学系统中的高压放电灯的平面(421)的基座凸缘(420),其中对于距离 在排出侧的第一电极(20)与基底凸缘(420)的平面(421)之间的距离B和从排出侧的第二电极(30)的端部到达平面(421)的距离B 底座法兰(420),以下关系适用:15.0mm <= A + B 2 = = 27.0mm。
Abstract:
An ultraviolet enhancer (UVE) holder (428) may be configured to attach a UVE (424) having an outer envelope (530) to an electrical lead (420) of a lamp (400) and to retain the UVE (424) within the lamp (400) in a desired position. The UVE holder (428) may include a plurality of turns (640) comprising a first turn (642) and a final turn (644). The first and final turns (642, 644) may have a substantially similar inner diameter (D) defining a through passage (646) shaped to conformingly receive the outer envelope (530) of the UVE (424). The UVE holder (428) may further include a first leg (534) depending from the first turn (642), wherein the first leg (534) may have a first distal portion (648) remote from the first turn (642) defining a first attachment region (650) adapted for attachment to a lamp capsule electrical lead (410).
Abstract:
A metal halide lamp includes a ceramic discharge vessel that encloses a discharge space which accommodates two electrodes and contains a salt filling. The salt filling includes sodium iodide, thallium iodide, calcium iodide, cerium iodide, and barium iodide as a colorpoint stabilizing additive. The salt filling further includes calcium iodide and thallium iodide, and substantially no sodium iodide. The salt filling further comprises mercury iodide.
Abstract:
A method of green joining ceramic components is disclosed, particularly for use in forming a discharge body for a ceramic metal halide lamp. The process includes providing a first green ceramic component having a male joining surface, and providing a second green ceramic component having a female joining surface dimensioned to matingly receive the first component. The first and second green ceramic components are assembled along the joining surfaces, the assembled components are uniformly heated to join the first and second components. The joined components are next cooled in a cooling bath that uniformly cools the joined components. Thereafter, the joined green part may be inserted in the furnace for debindering and sintering.
Abstract:
A guide laser beam that has an optical axis and a beam diameter substantially equivalent to those of a driver pulsed laser beam is introduced into an amplification system that amplifies a laser beam that is output from a driver laser oscillator. The guide laser beam is output from a laser device as a continuous light, and is introduced into a light path of the driver pulsed laser beam via a guide laser beam introduction mirror. A sensor detects an angle (a direction) of a laser beam and a variation of a curvature of a wave front. A wave front correction controller outputs a signal to a wave front correction part based on a measured result of a sensor. The wave front correction part corrects a wave front of a laser beam to be a predetermined wave front according to an instruction from the wave front correction controller.
Abstract:
This cold cathode tube lamp comprises a glass tube (11) into which at least a rare gas is filled and a discharge tube composed of a pair of an electrode (21) and an electrode (22) disposed facing each other at both ends inside the glass tube (11). In the respective electrode (21) and electrode (22), lead terminals (31a, 31b, 31c) and lead terminals (32a, 32b, 32c), one end of each of which is connected to the electrode and the other end of each of which is led out to the outside of the glass tube (11) are provided.
Abstract:
The cold cathode lamp includes a light-transmissive insulating tube; the first and second internal electrodes disposed inside the insulating tube; the first and second external electrodes disposed outside the insulating tube and connected to the first and second internal electrodes, respectively; the first and second insulating members covering the first and second external electrodes, respectively; the first opposite electrode opposite the first external electrode with the first insulating member interposed therebetween, the second opposite electrode opposite the second external electrode with the second insulating member interposed therebetween, the first insulating layer covering the outer edges of the first opposite electrode; and the second insulating layer covering the outer edges of the second opposite electrode. It is possible to light up a plurality of cold cathode lamps that are connected in parallel to a power supply. It is also possible to suppress the generation of a corona discharge around the outer edges of the opposite electrode.
Abstract:
An electrodeless high pressure discharge lamp is described. The lamp includes a resonating body configured to provide microwave energy and a discharge vessel, the discharge vessel containing a fill that forms a light-emitting plasma when receiving the microwave energy. The lamp further includes an outer bulb surrounding the discharge vessel. The lamp further includes a support structure within the outer bulb, the support structure comprising a plurality of wires forming a cage, wherein each end of each of the plurality of wires are directed to either end of the discharge vessel. The lamp further includes a first wire structure configured to hold the discharge vessel in place within the cage and surrounding each end of the discharge vessel.
Abstract:
An all-metal electron emissive structure for low-pressure lamps is disclosed. The all-metal electron emissive structure consisting of one or more metal is operable to emit electrons in response to a thermal excitation, wherein an active region of the electron emissive structure under steady state operating conditions has a temperature greater than about 1500 degree K, and wherein the cathode fall voltage in the discharge medium under steady state operating conditions is less than about 100 volts. A lamp including an envelope, an electrode including the all-metal electron emissive structure, and a medium, is also disclosed.