Abstract:
A non-volatile memory cell incorporated in an integrated circuit is disclosed. The non-volatile memory cell comprises an access transistor; a floating gate transistor coupled to the access transistor; a tunneling capacitor formed between the source of the access transistor and the gate of the second transistor; and a coupling capacitor having a first plate associated with a gate of the floating gate transistor, the first plate being formed to minimize the gate to source capacitance of the floating gate transistor. A window is also created to reduce the capacitance of the tunneling capacitor and the gate to source capacitance of the floating gate transistor. A method of manufacturing this non-volatile memory cell is also disclosed.
Abstract:
A semiconductor quantum memory element is disclosed which can share the terminals easily among a plurality of memory elements and can pass a high current and which is strong against noise. In order to accomplish this a control electrode is formed so as to cover the entirety of thin film regions connecting low-resistance regions. As a result, the element can have a small size and can store information with high density. Thus, a highly integrated, low power consumption non-volatile memory device can be realized with reduced size. A method of forming a memory element is also disclosed including performing the following steps of forming a first insulating layer, a second insulating layer, a first conductive layer and a layer of amorphous silicon. The amorphous silicon layer is crystallized to a polycrystalline silicon film. Semiconductor drains are deposited to form charge trapping and storage regions. A fourth insulating layer is deposited over the drains and a second conductive layer is deposited over a layer of silicon dioxide to form a control electrode of the memory element.
Abstract:
A resonant cavity type light emitting diode has a first DBR made of n-type AlAs or Al0.5Ga0.5As, a quantum well active layer, a second DBR made of p-type (Al0.2Ga0.6)0.5In0.5P or Al0.5In0.5P, and an n-type current constriction layer on an n-type GaAs substrate. The first DBR and the second DBR form a resonator. The quantum well active layer is formed in a position of an antinode of a standing wave inside the resonator. Between the second DBR and the current constriction layer, there is provided a p-type GaP etching protection layer that has a value obtained by dividing resistivity by thickness being 1×103 &OHgr; or more. Since a current in a current flow pass formed in the current constriction layer hardly diffuses to the outside of the current flow pass, there is generated few region with low current density that causes deterioration of responsespeed in a quantum well layer. Thus, the light emitting diode has an excellent high-speed response.
Abstract translation:谐振腔型发光二极管具有由n型AlAs或Al0.5Ga0.5As制成的第一DBR,量子阱活性层,由p型(Al 0.2 Ga 0.6)0.5 In 0.5 P制成的第二DBR或 Al 0.5 In 0.5 P,n型GaAs衬底上的n型电流收缩层。 第一DBR和第二DBR形成谐振器。 量子阱有源层形成在谐振器内的驻波的波腹的位置。 在第二DBR和电流收缩层之间,提供了一种p型GaP蚀刻保护层,其具有通过将电阻率除以1×10 -3Ω或更大的厚度获得的值。 由于形成在电流收缩层中的电流流动中的电流几乎不扩散到电流流通的外部,所以产生的电流密度低的区域导致量子阱层中的响应速度降低。 因此,发光二极管具有优异的高速响应。
Abstract:
Interband tunnel diodes which are compatible with Si-based processes such as, but not limited to, CMOS and SiGe HBT fabrication. Interband tunnel diodes are disclosed (i) with spacer layers surrounding a tunnel barrier; (ii) with a quantum well adjacent to, but not necessarily in contact with, one of the injectors, and (iii) with a first quantum well adjacent to, but not necessarily in contact with, the bottom injector and a second quantum well adjacent to, but not necessarily in contact with, the top injector. Process parameters include temperature process for growth, deposition or conversion of the tunnel diode and subsequent thermal cycling which to improve device benchmarks such as peak current density and the peak-to-valley current ratio.
Abstract:
A heterojunction bipolar transistor is provided having an improved current gain cutoff frequency. The heterojunction bipolar transistor includes a graded base layer formed from antimony. The graded base allows the heterojunction bipolar transistor to establish a quasi-electric field to yield an improved cutoff frequency.
Abstract:
An optical device having a layer comprising an organic material that includes a substantially uniform dispersion of light transmissive nanoparticles.
Abstract:
A semiconductor optical device with improved optical gain and enhanced switching characteristics. The semiconductor optical device includes positive and negative electrodes for providing holes and electrons, respectively. The semiconductor optical device also includes an active layer between the positive and negative electrodes. The active layer includes a multiple quantum well structure having p-type quantum well layers and barrier layers. The quantum well layers are doped with an impurity that diffuses less than zinc so that trapping holes are produced and excessive electrons contributing no light emission are quenched by the trapping holes. The impurity can be beryllium, magnesium, or carbon.
Abstract:
The invention uses the optical nonlinearity of electrically biased exciton polariton in a strong coupling regime or exciton polariton in a strong coupling regime with spatially separated electron and hole pairs. The method comprises providing a signal light (1300) to an exciton polariton system in a strong coupling regime and excitons with spatially separated electron and hole pairs, providing a control light (1302) to the exciton polariton system and removing the control light (1302). Various applications are available, including optical turnstiles, all-optical switches, all-optical phase retardation, low-power saturable transmitters and mirrors. In addition, the applications may operate at single- or few-photon levels.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.
Abstract:
The present invention comprises a junction between an unconventional superconductor, an intermediate material, and a conventional superconducting material. In some embodiments, the unconventional superconductor has an orthorhombic crystal structure and the supercurrent in the resulting junction flows in the c-axis direction of the orthorhombic crystal. In other embodiments, the supercurrent flows parallel to a direction in the a-b plane. Interface junctions according to embodiments of the present invention may be used in superconducting low inductance qubits (SLIQs) and in permanent readout superconducting qubits (PRSQs), can form the basis of quantum registers, and can permit parity keys or other devices made from conventional superconducting material to be attached to qubits made from unconventional superconducting material or vice versa. Coherent tunnel junctions according to embodiments of the present invention may be used to form parity keys or to coherently couple two regions of a superconducting material.