Abstract:
Radiating light from a semiconductor laser element is radiated in a direction normal to the surface of a photodetector substrate. The semiconductor laser element and photodetector are disposed on the same plane. Specifically, a reflecting mirror surface formed of a slanting surface of (111) lattice plane having a ridge line of direction is disposed on a silicon substrate of (100) lattice plane having an off-angle of 4.degree. to 14.degree. about an axis of direction or on a silicon substrate of (511) lattice plane having an off-angle of 1.degree. to 11.degree. about an axis of direction. The semiconductor laser chip is disposed at a position opposing to the reflecting mirror surface.
Abstract:
An optically-pumped solid state laser system having separate subsystems for cooling its gain medium and optical pumping assembly. The invention permits the operating temperatures of the gain medium and optical pumping assembly to be independently controlled, and permits a substantial increase in cooling efficiency as a result of independent control of coolant flow rates in the two cooling subsystems. In a class of preferred embodiments, the gain medium cooling subsystem includes a first channel through which coolant flows with relatively high flow rate and relatively low temperature (to maintain the gain medium at a desired low operating temperature), and the other cooling subsystem includes a second channel through which coolant flows with a relatively low flow rate and relatively high temperature. In one embodiment, the gain medium is a Holmium:YAG rod, and a Cerium doped glass tube surrounds the rod. Three to four gallons per minute of coolant flows through the tube to maintain the rod at an operating temperature in the range from about + 10 to - 15 degrees Celsius. The optical pumping assembly includes a set of flash lamps, and a Cerium doped glass tube surrounds each lamp. A total of no more than two gallons per minute of coolant flows through the tubes around the lamps, to maintain the lamps at a relatively high (but controlled) temperature.
Abstract:
In a solid-state laser device comprising a solid-state laser medium disposed in a laser resonator and a semiconductor laser device for exciting the solid-state laser medium, the solid-state laser device comprises a vessel for receiving the solid-state laser medium and the semiconductor laser device. The vessel is filled with a refrigerant so that the refrigerant is contact with at least one part of the semiconductor laser device and at least one of the solid-state laser medium. Connected to the vessel, a temperature controlling device controls temperature of the refrigerant to maintain a predetermined desired temperature so that the excitation laser beam has an excitation wavelength which coincides with an absorption wavelength of the solid-state laser medium. The refrigerant may composed of an insulated transparent liquid or an inert gas. Preferably, the temperature controlling device is a circulating temperature controlling device which has an inlet port for introducing a part of the refrigerant from the vessel and an outlet port for returning the part of the refrigerant to the vessel after keeping the part of the refrigerant at the desired temperature.
Abstract:
The exterior surfaces of a laser rod and pump lamp are covered with a highly reflective metal foil to prevent light leakage from the rod and lamp. The laser rod and pump lamp operate within a cavity inside a heat sink. Between the metal foil and the housing is a thermally conductive fluidic material selected to provide a tailored thermal impedance between the heat sink and the rod and pump to optimize the steady state temperatures of these components. The conductive fluid is not circulated but is contained to act as a simple heat conductor. The optically reflective and the heat transfer functions of the laser pumping operation are essentially separate from each other, enabling selection of materials for these respective functions to enhance performance of the laser and substantially simplify its construction.
Abstract:
A temperature control device for a semiconductor laser comprises a temperature sensitive resistor for detecting the temperature of a semiconductor laser and a Peltier element connected to the semiconductor laser and controlled, with regard to the direction of its heat transmission, in accordance with the resistance value of the temperature sensitive resistor. A single power source of a single polarity low voltage is used as a power source for the Peltier element. The current generated from the single polarity power source has its polarity changed by a bridging amplifier controlled by the resistance value of the temperature sensitive resistor and is supplied to the Peltier element.
Abstract:
Disclosed is a laser useful in, e.g., photolithography or medical surgery. In one embodiment, the laser comprises a discharge chamber and heat-generating electronics that are enclosed in a baffled enclosure that requires less cooling air to reliably cool the components in the enclosure than previous unbaffled enclosures. A method of reducing the amount of conditioned air is also provided. In a further embodiment, the laser has a heat-exchange system that acts quickly in response to changes in laser gas temperature by adjusting a flow-proportioning valve regulating water flow through a heat exchanger, thereby providing a continuously variable rate of heat exchange through the heat exchanger to maintain the lasing gas temperature constant. Methods of providing a laser beam and of improving the uniformity of a laser beam are disclosed, as are photolithography methods utilizing a laser and method of this invention.
Abstract:
A Peltier cooler includes a plurality of Peltier elements, first and second ceramic substrates that are disposed to hold the Peltier elements through metallized electrodes formed inside the ceramic substrates and to electrically connect the Peltier elements in series, and first and second metal substrates respectively fixed to the first and second ceramic substrates by brazing, so as to hold them. The metal substrates are fixable to a substrate on which optical components are mounted and a semiconductor laser package, by yttrium-aluminum-garnet (YAG) laser welding. The YAG laser welding and the brazing operation eliminate the use of low-temperature solder, where creeps may occur.
Abstract:
A new technology in semiconductor electronics is provided wherein basic semiconductor elements (BSEs) are fabricated on the surfaces of hollow, cone-shaped and/or other planar or non-planar substrata. Photosensitive and photoemitting elements are included within each BSE capable of transmitting and receiving signals to and from external sources in a direction that is non-parallel (oblique) to the silicon surface and circuitry plane. Inter-BSE communication are also achieved via fiber optic connectors. In one embodiment, the BSEs may be assembled in an efficient arrangement whereby some number of BSEs (for example, six (6)) are located adjacent and surrounding another "polar" BSE, thereby providing for short opto-electronic connections between the polar BSE and its neighbors. In additional embodiments, a power supply may reside within the internal space of the BSE, and the interior and exterior of the BSEs are designed as opposite electrical poles, thereby providing power to the BSEs. A highly effective method of cooling may also be provided by transferring coolant within conduits into the interior of each BSE, through the power supply and between the exterior of the internal power supply and the substrata. The present invention may also be applied, in one embodiment, to accept visual information in much the same way as the eye of an animal.
Abstract:
A solid state laser apparatus comprises a laser medium having a pair of optically flat surfaces confronting to each other, and side surfaces intersecting the optically flat surfaces along an optical axis, the laser medium having a rectangular cross section; heat insulators adhered to the side surfaces of the laser medium; and reflective films for shielding the thermal insulators from pumping light. A solid state laser apparatus may comprise heat conductors bonded to the side surfaces of the laser medium, the heat conductors removing heat which occurs at bonding surfaces, the amount of removed heat from the side surfaces being smaller than that from the optically flat surfaces.
Abstract:
A laser device having apparatus for increasing the pump energy from a laser diode array pump source that is available to be absorbed by the laser medium, the device also includes a heat sink apparatus having portions associated with the laser medium and with the pump source for dissipating the heat generated therein efficiently enough so that the device can be operated effectively even in a continuous wave mode.