Abstract:
An assembly comprises an AC (alternating current) housing connection block and a plurality of inserts seated in the AC housing connection block, wherein for each of the inserts, an interface between the insert and the housing is continuous. A method includes inserting a plurality of inserts into a mold; and molding an AC (alternating current) housing connection block.
Abstract:
A power supply system includes a regulated power source that has an a synchronous machine, a flywheel with the shaft connected thereto, an electrical generator electrically connected through a switch to the synchronous machine of the regulated power source, an engine having a main shaft coupled to the shaft of the electrical generator, a power supply, and a switch connected between the electrical generator, the power supply and the regulated power source. The switch transfers power from the regulated power source to the electrical generator so as to cause the electrical generator to rotate the shaft in order to rotate the shaft of the engine during engine start-up.
Abstract:
A synchronous machine (100) has a frame (110), a shaft (115), a main section (120), and an exciter section (125). The main section (120) has a stator winding (130) which is mounted on the frame, and a rotor winding (135) which is mounted on the shaft. The exciter section has a transformer (140) and a rectifier (145). The transformer has a primary winding (140A) mounted on the frame and a secondary winding (140B) mounted on the shaft. The rectifier is mounted on the shaft and rectifies an output of the secondary winding to provide a rectified output to the rotor. A control unit (170) provides a high-frequency control signal to the primary winding. This signal is magnetically coupled to the secondary winding, rectified, and then applied to the rotor to control the operation of the synchronous machine.
Abstract:
A preformed coil of a rotor of a synchronous generator of a gearless wind power plant is provided. The preformed coil may be arranged around a pole shoe defining a central axis. The preformed coil has a plurality of windings and is made up of laminations.
Abstract:
The invention provides a synchronous-generator stator, comprising a stator ring, a stator core, a circumferential gap between the stator ring and the stator core, and a plurality of decoupling units in the gap, wherein the decoupling unit has a first plate, which is matched to a contour of the stator core, and has a second plate, which is matched to the contour of the stator ring, wherein a mat, having a cavity and an inlet valve, is provided between the first and the second plate.
Abstract:
An electric machine having a rectifier assembly placed within a rotating shaft of the electric machine to convert the AC output of the electric machine to the DC input prior to transmission of the electricity from the electric machine.
Abstract:
An apparatus for the control and alignment of a sensor on a moving vehicle is provided that includes a gimbal ball supported by an outer axis structure and adapted to pivot about an outer elevation axis and about an outer azimuth axis. The outer axis structure is mounted to a vehicle. An inner axis structure includes a cardan shaft that is provided in the ball and is used to support a payload. An inner elevation axis passes through the cardan shaft. The payload is moved about inner pitch inner roll and inner yaw axes over a limited range of motion by the use of a plurality of permanent magnet wide-gap motors that are disposed on the plane of the cardan shaft and maximally away from the yaw axis in the ball. The motors are adapted to each urge the payload to move in two perpendicular axes, depending upon the current that is applied through conductors which pass through a flux field. Control circuitry is used to energize the motors in any desired combination to produce motion in roll, pitch, or yaw.
Abstract:
A high speed generator has its main rotor located within the main generator shaft assembly. The main rotor is mounted on a substantially hollow rotor shaft, which is also mounted within the main generator shaft assembly. The main stator surrounds at least a portion of the main generator shaft assembly. Main rotor cooling supply orifices extend through the rotor shaft. Main stator cooling supply orifices, which are in fluid communication with the main rotor cooling supply orifices, extend through the main generator shaft assembly. Cooling fluid is directed into the main generator shaft assembly, and flows through the main rotor cooling supply orifices and the main stator cooling supply orifices. The main rotor and main stator cooling supply orifices are configured to supply the main rotor and main stator with a cooling fluid spray. This configuration reduces the rotational fluid mass associated with flood-cooled rotors, which increases structural integrity, lowers material stresses, improves rotor dynamics.
Abstract:
A rotary drive mechanism is disclosed comprising a housing, a first motor having a first rotor and a first stator connected to the housing and a second motor having a second rotor and a second stator connected to the housing characterised in that the second motor is mechanically independent of the first motor whereby acceleration torques of the first motor are at least partially inertia balanced by the second motor. The balancing may be effected by equal and opposite rotation of the second motor. Control means may be provided to provide the second motor with a current which is proportional to that supplied to the first motor. Also disclosed is a positioning device and a probe having the rotary drive mechanism.
Abstract:
A rotor for a high speed generator is constructed of a plurality of laminations and interlamination disks, which are disposed between each of the laminations. A coil support assembly is disposed within each of the rotor interpole regions and is secured to the interlamination disks.