Abstract:
Methods for reducing a concentration of hexavalent chromium within a first aluminum slurry by adding a reducing agent to form a second aluminum slurry are provided. The reducing agent causes a chemical reduction reaction with the hexavalent chromium compound of the first aluminum slurry to form a trivalent chromium compound within the second aluminum slurry such that a first weight ratio of hexavalent chromium to trivalent chromium in the first aluminum slurry is decreased to a second weight ratio of hexavalent chromium to trivalent chromium in the second aluminum slurry, with the second weight ratio being less than the first weight ratio.
Abstract:
Novel date palm charcoal iron oxide nanocomposites (DPC-Fe3O4) are presented, as well as processes for making the same. These synthesized magnetic DPC-Fe3O4 nanocomposites have wide potential significant applications such as in energy storage devices, electronic devices, sensors, in drug delivery and medicine, catalytic application and also in water purification as an effective strong adsorbent.
Abstract:
Provided herein are methods of preparing tetrahexahedra nanoparticles and methods of using the tetrahexahedra nanoparticles as an oxidative catalyst.
Abstract:
Provided are a boron-nitride nanoplatelet(s) (BNNP)/metal nanocomposite powder and a preparing method thereof, the BNNP/metal nanocomposite powder including a base metal and BNNP dispersed in the base metal and configured to serve as a reinforcement of the base metal, wherein the BNNP are interposed between metal particles of the base metal in the form of a thin film of a plurality of layers and combined with the metal particles, and an amount of the BNNP in the base metal is greater than 0 vol % and less than 90 vol %.
Abstract:
Metal nanoparticles according to the present invention have at least a bimodal size distribution in which the ratio obtained by dividing the area of a first peak, which has the smallest median size on the basis of the median size of peaks in the size distribution of the metal nanoparticles, by the total area of all peaks constituting the size distribution meets 0.4-0.8, and are capped with a capping layer containing an organic acid.
Abstract:
A method of fabricating a metal nanowire dispersion solution includes heating a first solution including a metal compound, a catalyst, an organic protection agent and menstruum, thereby forming metal nanowires in the first solution, performing a first cleaning process providing a first solvent into the metal nanowire, thereby separating the organic protection agent surrounding the metal nanowires from the metal nanowires, separating the metal nanowires from the first solution by vacuum-filtering, and dispersing the separated metal nanowires in a dispersion solvent.
Abstract:
Disclosed herein is a composition of matter comprising metal nanoparticles dispersed in a protein matrix comprising an elastic protein or homolog or fragment thereof. The metal may be an electrocatalyst metal. Also disclosed are electrodes, electrochemical half-cells and fuel cells comprising the composition of matter.
Abstract:
The invention provides a method for coating fluidic channels, particularly millifluidic channels, with a catalyst coating having controlled dimensions and morphology, and methods for preparing such channels, and devices that can be used in combination with the channels. The invention further provides portable, hand-held millifluidic devices applicable for a wide variety of uses including molecular reduction reactions, in situ material characterization, in situ reaction catalysis characterization, in situ reaction mechanism characterization, nanomaterial synthesis, nanostructured metal and metal oxide growth and coating of channels, continuous flow cell culturing, enzymatic catalysis, biomolecular catalysis, combinatorial chemistry, reactions involving homogeneous catalysts bound to channel walls, peptide synthesis, nucleic acid synthesis, synthesis of pharmaceutical intermediates, biofunctionalization of nanomaterials or a combination thereof.
Abstract:
Disclosed is a method for preparing silver nanowire. The method includes: providing a first solution and a second solution; mixing the first solution and the second solution to obtain a third solution including a plurality of silver nanowires; and performing a purification procedure on the third solution to obtain the silver nanowires. Particularly, the first solution includes a capping agent dispersed in a first alcohol solvent, and the second solution includes a silver salt and a metal precursor dispersed in a second alcohol solvent, wherein the metal precursor has a formula: MXn or MXn.m(H2O) wherein M is Cu2+, Sn4+, or Ni2+, X is Cl−, Br−, I−, SCN−, SO42−, NO3−, or C2O42−, n is 1-4, m is 1-6, and M has a valence equal to the absolute value of the product of n and a valence of X.