Abstract:
Methods and compositions that protect cement compositions from corrosion, particularly from wet carbon dioxide, are provided. A soluble salt additive is provided to react with reaction products generated during the reactions that occur when cement is exposed to wet carbon dioxide. The soluble salt reacts to form an insoluble salt that forms a protective layer on the surface of the cement that protects it from further corrosion from exposure to wet carbon dioxide.
Abstract:
A modified toner based additive is a mixture of a toner powder and a second material selected from a group including a gelling clay, a reactive agent, an elastomer, a functional filler, a handling and agglomerating agent, a compatibilizer and mixtures thereof.
Abstract:
Disclosed is a process for exfoliating a layered material to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The process comprises: (a) charging a layered material to an intercalation chamber comprising a gaseous environment at a first temperature and a first pressure sufficient to cause gas species to penetrate into the interstitial space between layers of the layered material, forming a gas-intercalated layered material; and (b) operating a discharge valve to rapidly eject the gas-intercalated layered material through a nozzle into an exfoliation zone at a second pressure and a second temperature, allowing gas species residing in the interstitial space to exfoliate the layered material to produce the platelets. The gaseous environment preferably contains only environmentally benign gases that are reactive (e.g., oxygen) or non-reactive (e.g., noble gases) with the layered material. The process can additionally include dispersing the platelets in a matrix material to form a nanocomposite. The process also can include an additional process of re-compressing the nana-scaled platelets into a product such as a flexible graphite sheet.
Abstract:
A cement mix which is suitable for cementing in subterranean formations to provide zonal isolation or for blocking or plugging an abandoned pipeline or back filling a mine shaft, tunnel or excavation contains Portland cement or a mixture of two components selected from Portland cement, fly ash, slag, silica fume, gypsum, limestone and bentonite; and diatomaceous earth, preferably having a BET nitrogen adsorption specific surface area between from about 30 to about 100 m2/g. The cement mix may further contain an alkali metasilicate and/or alkali silicate, zeolite and/or aluminum silicate, an accelerator, such as an inorganic salt, and/or an alkaline metal oxide, as well as a lightweight density modifying agent, including glass, ceramic or plastic spheres. A cementitious slurry, formulated from the cement mix, has a density less than or equal to 1500 kg/m3 and exhibits good compressive strength.
Abstract:
Cement compositions that include improved lost circulation materials are provided. In certain exemplary embodiments, the improved lost circulation materials include inelastic particles of polyethylene, polystyrene, and/or polypropylene. Optionally, the cement compositions also may include additives such as fly ash, a surfactant, a dispersant, a fluid loss control additive, a conventional lost circulation material, an accelerator, a retarder, a salt, a mica, fiber, a formation-conditioning agent, fumed silica, bentonite, expanding additives, microspheres, weighting materials, or a defoamer.
Abstract:
A modified ground tire rubber based additive includes (a) 30-99 weight percent of ground tire rubber, (b) 0-9-69.9 weight percent of a material selected from a group including a gelling clay, a reactive agent, an elastomer, a plastomer, a handling and agglomerating agent and mixtures thereof and (c) 0.1-5 weight percent compatibilizer.
Abstract:
The various embodiments of the present invention relate generally to high strength foam materials and methods of making the same. More particularly, various embodiments of the present invention relate to high strength foam materials comprising pozzolans, such as cenospheres derived from fly ash. An embodiment of the present invention comprises, a pozzolan foam material comprising a pozzolan, an alkali, a silicate, and an organosilicon compound. Various embodiments of the present invention are directed to strong, lightweight materials that are environmentally-friendly and can be economically manufactured.
Abstract:
A composite product comprising a substrate layer and one or more functional layers applied thereto. The slurry is applied to the substrate layer to form a functional layer and the functional layer dewatered through the substrate layer. The functional layers can be repeated to build up a laminated composite product. Functional additives may be included in each layer to provide desired properties to that layer and indeed to the subsequent composite product.
Abstract:
A method of solidifying a waste or soil composition containing at least one contaminant species which comprises adding to said composition binder and optionally water, mixing the binder into the waste or soil material to form a mixture thereof and simultaneously during formation of the mixture and/or subsequently after formation of the mixture, treating the mixture with sufficient carbon dioxide to achieve setting and subsequent hardening of said mixture so as to produce a solidified waste or soil composition.
Abstract:
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.