High viscosity latexes
    3.
    发明授权

    公开(公告)号:US11608403B2

    公开(公告)日:2023-03-21

    申请号:US17230083

    申请日:2021-04-14

    申请人: Xerox Corporation

    发明人: Sepehr M. Tehrani

    摘要: Methods for forming latexes are provided. In an embodiment, such a method comprises adding a monomer emulsion comprising water, a monomer, an acidic monomer, a hydrophilic monomer, a difunctional monomer, a first reactive surfactant, and a chain transfer agent, to a reactive surfactant solution comprising water, a second reactive surfactant, and an initiator, at a feed rate over a period of time so that monomers of the monomer emulsion undergo polymerization reactions to form resin particles in a latex. The reactive surfactant solution does not comprise monomers other than the second reactive surfactant, the reactive surfactant solution does not comprise a resin seed, and the monomer emulsion does not comprise the resin seed. The latex is characterized by a viscosity in a range of from about 10 cP to about 100 cP as measured at a solid content of about 30% and at room temperature. The latexes are also provided.

    Soluble material for three-dimensional molding

    公开(公告)号:US10954378B2

    公开(公告)日:2021-03-23

    申请号:US15518910

    申请日:2015-10-02

    申请人: KAO CORPORATION

    摘要: The soluble material for three-dimensional modeling of the present invention is a soluble material for three-dimensional modeling that is used as a material of a support material that supports a three-dimensional object when manufacturing the three-dimensional object with a fused deposition modeling type 3D printer. The soluble material for three-dimensional modeling contains at least one polymer and at least one filler. In the soluble material for three-dimensional modeling, the filler is a fibrous filler having a fiber length of 0.02 μm to 1,000 μm and a fiber diameter of 0.0001 μm to 20 μm and/or a flat filler having a particle size of 0.1 μm to 20 μm and a thickness of 0.01 μm to 10 μm. The content of the filler is 0.01 part by mass to 200 parts by mass with respect to 100 parts by mass of the polymer. According to the present invention, foaming and a decrease of the accuracy of a three-dimensional object can be suppressed even when the soluble material for three-dimensional modeling is used in manufacture of the three-dimensional object with a 3D printer after being exposed to high humidity.