摘要:
A differential density absorbent towel paper product comprising at least one absorbent towel paper web is disclosed. The absorbent towel paper web has: (a) from about 20% to about 90% by weight of the dry fiber basis of the absorbent towel paper web of a refined soft wood pulp fiber mixture, (b) pulp fibers selected from the group consisting of hard wood fibers, non-wood fibers, recycled fibers, synthetic polymer fibers, bleached eucalyptus kraft fibers, and combinations thereof and, (c) not more than about 10% by weight moisture. The refined soft wood pulp fiber mixture has: i) from about 18.5% to about 88.5% by weight of soft wood pulp fiber; ii) from about 0.25% to about 5.0% by of cationic strengthening polymer; and, iii) from about 0.05% to about 20% by weight of cellulose nano-filaments.
摘要:
The present disclosure provides methods and compositions for strengthening paper. The methods may include a step of spraying an anionic polymer onto a paper sheet to increase the strength of the paper sheet. The anionic polymer may have amino groups, amide groups, or a combination of amino groups and amide groups. These groups may be functionalized with an aldehyde. Methods may also include a step of adding a wet end composition to a wet end of the papermaking process.
摘要:
A method of reducing contaminants in a pulp or papermaking process includes the steps of: providing a lignocellulosic pulp comprising lignocellulosic fibers and at least one hydrophobic contaminant; providing a cationic polymer; providing a cleaning blend comprising a vegetable oil alkyl ester and at least one surfactant; and applying the cationic polymer and the cleaning blend to the lignocellulosic pulp to reduce a content of the at least one hydrophobic contaminant in the pulp or papermaking process.
摘要:
A differential density paper product comprising at least one paper web is disclosed. The paper product has: (a) from about 20% to about 90% by weight of the dry fiber basis of the paper product of a refined soft wood pulp fiber mixture, (b) pulp fibers selected from the group consisting of hard wood fibers, non-wood fibers, recycled fibers, synthetic polymer fibers, bleached eucalyptus kraft fibers, and combinations thereof; and, (c) not more than about 10% by weight moisture.
摘要:
Wet strengthened fiber products, wet strengthening resins, and methods for making such wet strengthened fiber products and wet strengthening resins. The wet strengthened fiber product can include a fiber web and an at least partially cured wet strengthening resin, which prior to at least partially curing, the wet strengthening resin can include a polyamide-epihalohydrin (PAE) resin and a cationic styrene maleimide (SMI) resin. The PAE resin can include a reaction product of a polyamidoamine and an epihalohydrin and the cationic SMI resin can include a reaction product of a styrene maleic anhydride (SMA) copolymer and an amine. The wet strengthened fiber product can include the wet strengthening resin in an amount of about 0.05 wt % to about 5 wt %, based on a dried weight of the wet strengthened fiber product.
摘要:
The present invention relates to a crumple-resistant security sheet comprising fibers; an anionic polymer in a proportion lying in the range 5% to 45% by dry weight relative to the total dry weight of the fibers, and presenting a glass transition temperature greater than 40° C.; and a main cationic flocculation agent in a quantity lying in the range 1% to 5% by dry weight relative to the total dry weight of the fibers.
摘要:
The present invention relates to a process of making paper or paperboard in which a cellulosic thin stock is provided and subjected to one or more shear stages and then drained and a moving screen to form a sheet which is dried, wherein the process employs a retention system which is applied to the thin stock, said retention system comprising as components i) a blend of different cationic polymers and ii) a microparticulate material, in which the blend of cationic polymers comprises, a) a cationic polymer having a charge density of at least 3 mEq per gram and a molar mass of greater than 700,000 Da, b) a cationic polymer having a charge density of below 3 mEq per gram and an intrinsic viscosity of at least 3 dl/g, wherein one of the components of the retention system is dosed into the thin stock after the final shearing stage and the other is dosed into the thin stock before the final shearing stage.
摘要:
Process for the production of paper, board and cardboard having high dry strength by addition of an aqueous composition comprising a nanocellulose and at least one polymer selected from the group consisting of the anionic polymers and water-soluble cationic polymers, draining of the paper stock and drying of the paper products.
摘要:
The invention relates to a sol containing silica-based particles having an axial ratio of at least about 10 and specific surface area of at least about 600 m2/g. The invention further relates to a sol containing silica-based particles having an axial ratio of at least about 10 and S-value up to about 25. The invention further relates to a sol containing silica-based particles having an axial ratio of at least about 10 and a specific surface area of at least about 400 m2/g, wherein the silica-based particles are surface-modified. The invention further relates to a sol containing silica-based particles having a viscosity of at least 50 cP and silica content of at least about 3% by weight, wherein the silica-based particles have a specific surface area of at least about 400 m2/g. The invention further relates to a process for producing the aqueous silica-based sol according to the invention, a sol containing silica-based particles obtainable by the process, use of the sol containing silica-based particles as a flocculating agent. The invention further relates to a process for producing paper in which the sol containing silica-based particles is used as a drainage and retention aid.
摘要:
An antimicrobial paper includes a paper web having a grammage between 10 and 60 grams per square meter, a cationizing agent in a concentration ranging between 0.05 wt % and 5 wt %, an antimicrobial agent in a concentration ranging between 0.01 wt % and 3 wt %, the antimicrobial agent and the cationizing agent being added on the paper web having a consistency above 15 wt %, the antimicrobial paper having an antimicrobial agent release of above about 0.01 wt % when wetted.