Abstract:
A boss is provided around the periphery of a bushing that is penetrated by a shaft, which moves inside the bushing in the axial direction of the shaft. The boss retains the bushing and the shaft moving inside the bushing, and has a heat conductivity that is higher than that of the bushing. An air gap is provided between the bushing and the boss.
Abstract:
The present disclosure is directed to a spring bearing which is used in a roller system for a toner cartridge. The spring bearing has a front surface and a rear surface and an angled relief cut extending from the front surface to the rear surface.
Abstract:
Embodiments of the invention are directed to bearing assemblies configured to effectively provide heat distribution from and/or heat dissipation for bearing element, bearing apparatuses including such bearing assemblies, and methods of operating such bearing assemblies and apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed about an axis. Each superhard bearing element of the plurality of superhard bearing elements has a superhard material including a superhard surface. Additionally, a support ring structure that includes a support ring that supports the plurality of superhard bearing elements and a thermally-conductive structure in thermal communication with the superhard table of each of the plurality of superhard bearing elements. The thermally-conductive structure has a higher thermal conductivity than the support ring of the support ring structure.
Abstract:
A steering apparatus includes: a rack shaft which moves steered portions based on steering by a steering portion; a cover portion covering the rack shaft; and a bearing member arranged inside the cover portion and supporting the rack shaft so that the rack shaft is movable in an axial direction of the rack shaft, and the bearing member has a reservoir portion reserving a lubricant at a contact spot with respect to the rack shaft.
Abstract:
A gyratory cone crusher includes a first and a second crushing shell defining a crushing gap. The first crushing shell is arranged to gyrate around a vertical axis, in order to crush material entering the crushing gap, and is vertically supported by a thrust bearing including first and second bearing plates defining a spherical sliding interface. One of the bearing plates has one or more cooling and/or lubricating grooves at the sliding interface, each groove defining a channel, extending from the center of the sliding interface to the periphery thereof. In order to obtain a uniform distribution of grooves, the cooling/lubricating grooves are in the form of one or more spirals extending from the center of the sliding interface to the periphery thereof. The disclosure further relates to a bearing plate and a kit of bearing plates involving such a bearing plate.
Abstract:
A method for controlling the introduction of additional lubricant (4) into a bearing (3) lubricated with a lubricant (4), in particular a rolling bearing or plain bearing, comprising the following steps is provided:—determining lubricant state information describing the state, in particular the chemical composition, of the lubricant (4) contained in the bearing (3) and—controlling the introduction of additional lubricant (4) into the bearing (3) depending on the state, which is described by the determined lubricant state information, of the lubricant (4) contained in the bearing (3).
Abstract:
A five-axial groove cylindrical journal bearing assembly with pressure dams designed for bi-directional rotation for rotatably supporting a rotating body provided with a babbitted inner surface. The journal bearing assembly has two pressure dams that are substantially mirror images of each other along a centerline between the pressure dams and has two pressure dams each located substantially opposite the direction of two vector loads of the journal bearing assembly.
Abstract:
The invention relates to a guide roller comprising a bearing journal (13) at each of two ends. Each bearing journal is provided with a plain bearing (14), which is designed as a hollow journal, and can be connected to the coolant supply line in order to conduct a coolant through the hollow journal into the coolant channel (12) or to conduct the coolant out of the coolant channel. The plain bearing (14) is lubricated by the coolant that is conducted through the bearing journal (13) designed as a hollow journal. A roller assembly for a strand casting system is provided with a plurality of said guide rollers (1). The guide rollers are arranged at an axial distance from each other along a strand (2) produced by the strand casting system and are each rotatably supported in a respective bearing mount (3). Each bearing mount is arranged on at least one frame part (4, 5) in a preloaded manner. The bearing mounts (3) are supported on the frame parts (4, 5) so as to be self-setting by means of elastically pliable connecting means (6). Even if the strand cross-section of the produced strand changes during the operating duration or due to changed process parameters, the originally set pressing force of the guide rollers remains substantially unchanged.
Abstract:
A bearing ring for use in bearing apparatuses is disclosed. Such a bearing ring may comprise a body having a first array and a second array of bearing elements mounted to the body. The body may have an annular shape and the first array and the second array may be a concentric elliptical shapes, including circles. The body may comprise a plurality of bearing element pockets into which the bearing elements are disposed. In one aspect of the instant disclosure, the material of the bearing elements comprises polycrystalline diamond. A bearing apparatus comprising a first bearing ring and a second bearing ring is also disclosed. A drilling system for use in drilling subterranean formations employing the bearing apparatus is also disclosed.
Abstract:
A spherical bearing has an outer ring with a concave bearing surface and an inner ring having a convex bearing surface, which is in sliding engagement with the concave bearing surface. A lubrication groove is formed in the convex bearing surface and/or the concave bearing surface. The lubrication groove is defined by a concave central portion and by convex side portions. The concave central portion has a first radius of curvature and the convex side portions have a second radius of curvature. The second radius of curvature is at least 0.7 times the first radius of curvature.