摘要:
An apparatus and method to produce a hologram of an object includes an electromagnetic radiation assembly configured to receive a received electromagnetic radiation, such as light, from the object. The electromagnetic radiation assembly is further configured to diffract the received electromagnetic radiation and transmit a diffracted electromagnetic radiation. An image capture assembly is configured to capture an image of the diffracted electromagnetic radiation and produce the hologram of the object from the captured image.
摘要:
Methods for using electron diffraction holography to investigate a sample, according to the present disclosure include the initial steps of emitting a plurality of electrons toward the sample, forming the plurality of electrons into a first electron beam and a second electron beam, and modifying the focal properties of at least one of the two beams such that the two beams have different focal planes. Once the two beams have different focal planes, the methods include focusing the first electron beam such that it has a focal plane at or near the sample, and focusing the second electron beam so that it is incident on the sample, and has a focal plane in the diffraction plane. An interference pattern of the first electron beam and the diffracted second electron beam is then detected in the diffraction plane, and then used to generate a diffraction holograph.
摘要:
Method for acquisition of at least one hologram of a sample by off-axis holography using a transmission electron microscope, the microscope comprising an electron beam source, at least one objective lens, a sample holder, at electron biprism and means of displacing the electron beam in precession mode upstream from the sample holder and a compensator of the precession downstream from the sample holder, said method comprising the activation of means of displacing the electron beam in precession mode and the compensator and acquisition of a hologram of said sample in precession mode.
摘要:
A vehicle such as a helicopter may scan a scene using a transmitter mounted on a rotating part like a rotor and a receiver mounted on a body of the vehicle. Based on a Doppler shift caused by the rotation of the rotating part, patterns may be recorded and used to develop a holographic image of the scene.
摘要:
Provided is a radiation phase-contrast imaging device capable of assuredly detecting a self-image and precisely imaging the internal structure of an object. According to the configuration of the present invention, the longitudinal direction of a detection surface of a flat panel detector is inclined with respect to the extending direction of an absorber in a phase grating. This causes variations in the position (phase) of a projected stripe pattern of a self-image at different positions on the detection surface. This is therefore expected to produce the same effects as those obtainable when a plurality of self-images are obtained by performing imaging a plurality of times in such a manner that the position of the projected self-images on the detection surface varies. This alone, however, results in a single self-image phase for a specific region of the object. Therefore, according to the present invention, it is configured such that imaging is performed while changing the relative position of the imaging system and the object.
摘要:
A new optical arrangement that creates high efficiency, high quality Fresnel Incoherent Correlation Holography (FINCH) holograms using transmission liquid crystal GRIN (TLCGRIN) diffractive lenses has been invented. This is in contrast to the universal practice in the field of using a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have 95% transmission efficiency, are analog devices without pixels and are free of many limitations of reflective SLM devices. An additional advantage is that they create an incoherent holographic system that is achromatic over a wide bandwidth. Two spherical beams created by the combination of a glass and a polarization sensitive TLCGRIN lenses interfere and a hologram is recorded by a digital camera. FINCH configurations which increase signal to noise ratios and imaging speed are also described.
摘要:
The invention relates to a grating device for phase contrast and/or dark-field imaging of a movable object, an interferometer unit, a phase contrast and/or dark-field imaging system, a phase contrast and/or dark-field imaging method, a computer program element for controlling such device and a computer readable medium having stored such computer program element. The grating device comprises a grating unit, an actuation unit, a motion detecting unit, and a control unit. The actuation unit is configured to position the grating unit in different sampling positions relative to the moveable object. The motion detecting unit is configured to detect a motion of the movable object. The detected motion of the moveable object may be a repetitive motion. The control unit is configured to control the actuation unit to position the grating unit in the different sampling positions based on the detected motion of the movable object.
摘要:
A new optical arrangement that creates high efficiency, high quality Fresnel Incoherent Correlation Holography (FINCH) holograms using transmission liquid crystal GRIN (TLCGRIN) diffractive lenses has been invented. This is in contrast to the universal practice in the field of using a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have 95% transmission efficiency, are analog devices without pixels and are free of many limitations of reflective SLM devices. An additional advantage is that they create an incoherent holographic system that is achromatic over a wide bandwidth. Two spherical beams created by the combination of a glass and a polarization sensitive TLCGRIN lenses interfere and a hologram is recorded by a digital camera. FINCH configurations which increase signal to noise ratios and imaging speed are also described.
摘要:
Systems and methods for surgical imaging are disclosed herein. A head-mountable device (HMD) can include a display configured to provide an image within a field of view of an environment of the HIVID. At least one fiducial marker can be arranged on a surgical patient. At least one sensor can be configured to track a position of the at least one fiducial marker. Three-dimensional image information indicative of one or more internal features of the patient is provided. Based on information from the at least one sensor, a position of the surgical patient can be determined. Based on the determined position of the surgical patient, the HIVID can display at least a portion of the three-dimensional image information superimposed on at least a portion of the surgical patient within the field of view.
摘要:
A structural body, comprising: a resin layer with a curved surface; a first bonding layer containing a water-soluble polymer; a second bonding layer having a hydrogen-bonding surface; and a gold layer in this order, the first bonding layer being between, and in contact with, the curved surface of the resin layer and the hydrogen-bonding surface of the second bonding layer.