摘要:
According to one embodiment, a production pallet control system comprises a plurality of magnetic disk devices configured to execute a plurality of processes, and the magnetic disk devices configured to output status information related to the process based on a requires from the outside and a controller connected to the magnetic disk devices in a mutually communicable manner, the controller configured to inquire the status information of each of the magnetic disk devices.
摘要:
A cartridge is provided and includes tape-shaped magnetic recording medium; and cartridge memory; wherein cartridge memory includes communication unit that communicates with recording/reproducing device in state where cartridge is loaded on recording/reproducing device; storage unit; and control unit that stores, reads, and transmits information, wherein information includes manufacturing information of cartridge and adjustment information for adjusting a tension applied to the tape-shaped magnetic recording medium in a longitudinal direction of tape-shaped magnetic recording medium thereof, tape-shaped magnetic recording medium has a plurality of servo bands, and wherein a temperature expansion coefficient α of the tape-shaped magnetic recording medium satisfies 6 ppm/° C.≤α≤8 ppm/° C.
摘要:
A non-metallic media substrate includes a disc-shaped substrate body having at least one media storage surface on a face thereof. The substrate body has a center opening having an inner diameter and an outer diameter surface, and the substrate body has a thickness. The substrate further includes an annular groove at the outer diameter of the media substrate, the annular groove having chamfered edges and an internal concavity extending toward the inner diameter.
摘要:
A method in one embodiment includes fabricating a tape having an applicator portion for applying an organic coating to a magnetic head for reducing exposure of the head to oxidation promoting materials. The method also includes applying the organic coating to the applicator portion of the tape, the organic coating being for coating a tape bearing surface of the magnetic head with the organic coating upon the applicator portion being run over the tape bearing surface of the magnetic head. The method further includes applying a lubricant to a data portion of the tape.
摘要:
A hard disk drive with a multiple disk stack normally utilizes disk separator plates near the disk surfaces to reduce wind induced vibrations in the disks and the read/write heads. The manufacturing methods currently used to make these separator plates, metal casting and machining, or injection molded plastic, or extruding and machining, or cold forging tends to be expensive and creates unwanted weight and bulk without the desired precision. Stamping disk separator plates from metal provides exceptional dimensional control at reduced cost, but cannot readily provide the thicknesses required. Stamping and extruding the offsets, or stamping and folding the offsets, is a manufacturing process that provides the required dimensions for the offsets, and dimensional control and reduced cost.
摘要:
A product according to one embodiment includes a tape having an applicator portion for applying an organic coating to a magnetic head; the organic coating on the applicator portion of the tape; and a lubricant on a data portion of the tape. The lubricant has a different composition than the organic coating. A method for protecting a magnetic head according to one embodiment includes applying an organic coating to a magnetic head using the foregoing product.
摘要:
A device for preventing damage to a pivot bearing assembly during manufacture of a hard disk drive includes a first bottom voice coil motor (VCM) plate hold-down clamp configured to clamp down on a first exposed surface of a bottom VCM plate of the hard disk drive and a second bottom VCM plate hold-down clamp configured to clamp down on a second exposed surface of the bottom VCM plate. The first and second bottom VCM plate hold-down clamps are configured to prevent damage to the pivot bearing assembly during installation of the top VCM plate over the bottom VCM plate by clamping down on the bottom VCM plate with a force that is at least sufficient to prevent the bottom VCM plate from moving when the top VCM plate is installed over the bottom VCM plate.
摘要:
In one embodiment, a magnetic head includes a main pole configured to write data to a magnetic medium, a trailing shield positioned on a trailing side of the main pole, and a STO between the main pole and the trailing shield, wherein the STO includes a laminated structure having a FGL, a spun polarization layer (SPL), and a non-magnetic spacer positioned between the FGL and the SPL, wherein the FGL includes a laminated structure having one or more layers of a CoFe alloy and a Heusler alloy alternately laminated in this order from an end of the FGL closest to the non-magnetic spacer. In another embodiment, a method is presented for forming such a magnetic head utilizing a FGL that includes a laminated structure baying layers of a CoFe alloy and a Heusler alloy alternately laminated in this order from an end of the FGL closest to the non-magnetic spacer.
摘要:
The present disclosure provides systems and methods associated with data storage using atomic films, such as graphene, boron nitride, or silicene. A platter assembly may include at least one platter that has one or more substantially planar surfaces. One or more layers of a monolayer atomic film, such as graphene, may be positioned on a planar surface. Data may be stored on the atomic film using one or more vacancies, dopants, defects, and/or functionalized groups (presence or lack thereof) to represent one of a plurality of states in a multi-state data representation model, such as a binary, a ternary, or another base N data storage model. A read module may detect the vacancies, dopants, and/or functionalized groups (or a topographical feature resulting therefrom) to read the data stored on the atomic film.
摘要:
In one embodiment, a magnetic head includes a main pole configured to write data to a magnetic medium, a trailing shield positioned on a trailing side of the main pole, and a STO between the main pole and the trailing shield, wherein the STO includes a laminated structure having a FGL, a spun polarization layer (SPL), and a non-magnetic spacer positioned between the FGL and the SPL, wherein the FGL includes a laminated structure having one or more layers of a CoFe alloy and a Heusler alloy alternately laminated in this order from an end of the FGL closest to the non-magnetic spacer. In another embodiment, a method is presented for forming such a magnetic head utilizing a FGL that includes a laminated structure baying layers of a CoFe alloy and a Heusler alloy alternately laminated in this order from an end of the FGL closest to the non-magnetic spacer.