Abstract:
A method of controlling a matrix converter system is provided. The method includes receiving an operating condition and consulting a trained Q-data structure for reward values associated with respective switching states of the switching matrix for an operating state that corresponds to the operating condition. The Q-data structure is trained using Q-learning to map a reward value predicted for respective switching states to respective discrete operating states. The method further includes sorting the reward values predicted for the respective switching states mapped to the operating state that corresponds to the operating condition, selecting a subset of the set of the mappings as a function of a result of sorting the reward values associated with the switching states of the operating state, evaluating each switching state included in the subset, and selecting an optimal switching state for the operating condition based on a result of evaluating the switching states of the subset.
Abstract:
A power system for a reactive gas generator can include a direct three phase inverter. A resonant tank can further be included to receive a square wave output of the direct three phase inverter and provide a sine wave output. The power system can include an inverter controller that turns on and off selected switches of the direct three phase inverter based on states of the three phases of a three phase AC power supply, where a switch is turned on with an adaptive ON time and a modulated OFF time depending on a desired output power.
Abstract:
The subject-matter of the present invention concerns an electrical architecture for power distribution to subsea equipment comprising at least one variable speed drive, VSD, module, wherein said at least one VSD module comprises at least one self commutated line side converter including power semiconductor.
Abstract:
An electrical circuit, in particular a circuit used for generating electric power, wherein this circuit comprises a generator with n phases, a converter and a transformer to which a p-phase load can be connected. The converter comprises m partial converters, each of the partial converters is composed of p units and each of these units is provided with n/m switching circuits. The switching circuits of the individual units are connected symmetrical to the generator.
Abstract:
A process is disclosed for converting standard musical notes to natural musical notes based upon Rod formats. A signal of standard musical notes is input and the frequency of each note in the signal is analyzed. A Rod format natural harmonic resonance is selected and the frequency of each note in the signal is converted to a natural frequency corresponding to the selected Rod format natural harmonic resonance. A signal consisting of the converted notes is output. An apparatus capable of performing the inventive process on a signal of standard musical notes includes a signal input port and a signal output port, means for converting the frequency of standard musical notes to a corresponding natural frequency corresponding to a Rod format, means for selecting a Rod format natural harmonic resonance, and a frequency analyzer.
Abstract:
A front-end circuit according to the present invention includes a VCO which oscillates a local signal, a mixer which converts an RF signal Frf into a baseband signal, a DC offset cancel circuit which detects a DC offset contained in the baseband signal and then eliminates the DC offset, and a local frequency control circuit which controls a frequency of the local signal. In a case where the RF signal is an analog television signal, the local frequency control circuit controls the frequency of the local signal so that a frequency of the baseband signal differs from each frequency spectrum of a luminance signal contained in a video signal which is generated by demodulating the baseband signal. This makes it possible to provide the front-end circuit which can prevent video distortion caused when a frequency spectrum is eliminated from the luminance signal.
Abstract:
An output voltage command signal for outputting a specified three-phase ac output voltage is generated by a line voltage control command signal generating section, and a signal representing a current flow ratio is generated by a current flow ratio generating section based on a specified input current command signal. The output voltage command signal is corrected by a command signal computing section based on the output voltage command signal generated by the line voltage control command signal generating section and the signal representing the current flow ratio generated by the current flow ratio generating section. A PWM conversion signal is generated by a PWM conversion signal generating section based on the corrected output voltage command signal and a carrier signal. Based on the generated PWM conversion signal, a three-phase ac input voltage is converted into a specified three-phase ac input voltage by a conversion section.
Abstract:
A process for converting standard musical notes to Ra format musical notes comprising inputting a signal of standard musical notes, analyzing the frequency of each note in the signal, selecting a Ra format natural harmonic resonance, converting the frequency of each note in the signal to a Ra format frequency corresponding to the selected Ra format natural harmonic resonance, and outputting signal consisting of the converted notes. An apparatus including a processor capable of performing the inventive process on a signal of standard musical notes. The apparatus (12) includes a signal input port (14) and a signal output port, means for converting the frequency of standard musical notes to a corresponding frequency of Ra musical notes, means for selecting a Ra format natural harmonic resonance, and a frequency analyzer (26).
Abstract:
A power source device includes an oscillator generating a clock, a frequency division unit dividing the clock to output a pulse, a sequence generation unit generating sequences “N” with respect to each switching of the pulse, a frequency division ratio setting unit setting frequency division ratio, a switching element driven by the pulse, and a piezoelectric transformer outputting alternating high voltage from a secondary-side when a primary-side is applied with voltage. The generated sequence and the set frequency division ratio are compared to output the pulses of fractional-M, −M+1 frequencies. An average frequency division ratio of the pulses of fractional-M, −M+1 frequencies determined by (M×α)+(M+1)×β/(α+β), where α and β respectively represent the number of pulses of “M” and “M+1” per unit time. The average frequency division ratio and frequency division ratio become equal at a sequence generation cycle and approximated in a period shorter than the sequence generation cycle.
Abstract:
A matrix converter may be provided with AC switches that comprise bi-directional sets of semiconductor switches that are gated with a common gating link. A low loss diode-bridge based snubber may facilitate introduction of time delay between sequential operations of the bi-directional set of semiconductor switches. The matrix converter may be operated in a three-phase mode with only one gating signals for each AC switch, in contrast to prior-art matrix converters which may require use multiple gating signals for each AC switch.