Abstract:
A method (10) of bi-directional optical communication, the method comprising: generating (12) a first optical communication signal for transmission in one direction through an optical fibre, generating the first optical communication signal comprising: receiving information for transmission and generating (14) a baseband signal comprising a representation of the information; performing digital upconversion (16) of the baseband signal to form an upconverted baseband signal; performing optical modulation (18) of an optical carrier signal with the upconverted baseband signal; and restricting an optical spectrum of the first optical communication signal to a first portion of an optical channel frequency slot by performing one of digital filtering (16) in addition to digital upconversion and optical filtering (36) after optical modulation; and receiving (20) a second optical communication signal transmitted in an opposite direction through the optical fibre, the second optical communication signal having an optical spectrum occupying a second portion of the optical channel frequency slot, separate to the first portion.
Abstract:
A communication system (100) includes a first multiplexer (320a) multiplexing a first optical line terminal signal (SD1) having a first multiplexing group and a second optical line terminal signal (SDn) having a second multiplexing group into a first multiplexed signal (SDM). The communication system includes a second multiplexer (320b) demultiplexing a second multiplexed signal (SUM) into a third optical line terminal signal (SU1) having the first multiplexing group and a fourth optical line terminal signal (SUn) having the second multiplexing group. Moreover, the communication system includes a third multiplexer (310) optically connected with the first and second multiplexers, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal (STa) and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
Abstract:
Example embodiments presented herein are directed towards a communications controller, and corresponding method therein, for wavelength control of a first and second channel. The first and second channels are bidirectional and adjacent to one another in a single fiber in a Dense Wavelength Division Multiplexing (DWDM) based system.
Abstract:
Preventing optical beat interference includes dynamically managing an adjustable optical transmitter wavelength of each of a plurality of customer premises equipment, wherein each of the plurality of customer premises equipment is in bidirectional communication with a customer premises equipment controller. A bidirectional communication system includes a customer premises equipment controller; and a plurality of customer premises equipment coupled to the customer premises equipment controller, each of the plurality of customer premises equipment having an adjustable optical transmitter wavelength, wherein each of the plurality of customer premises equipment is in bidirectional communication with the customer premises equipment controller to prevent optical beat interference by dynamically managing the adjustable optical transmitter wavelength of each of the plurality of customer premises equipment.
Abstract:
Intrapersonal communication systems and methods that provide an optical digital signal link between two or more local devices are disclosed. In some embodiments, the system includes a first signal converter disposed at a first end of the optical digital signal link and configured to convert between electrical digital signals from a first local device and optical digital signals from the optical digital signal link. The system can include an optical connector having a non-contact portion configured to couple optical digital signals between the first signal converter and the optical digital signal link across a gap. The system can include a second signal converter disposed at a second end of the optical digital signal link and configured to convert between electrical digital signals from the second local device and optical digital signals from the optical digital signal link.
Abstract:
A first and a second interconnection unit comprising a respective first and a second communication interface, a first and a second electro-optical converter, and a multiplexing unit, is disclosed. The first interconnection unit is adapted to receive electrically transmitted analog and digital information, convert said information into electrically transmitted information, and to multiplex the information so as to enable transmission over a bidirectional link. The second interconnection unit is adapted to receive and de-multiplex the transmitted analog and digital information, to convert it back into electrically transmitted analog and digital information, and to output said information. A system comprising the first and second interconnection units is also disclosed. The system is adapted for supplying both analog services and digital services with communication information over the bidirectional link.
Abstract:
A light powered communications system. The light powered communications system includes an audio control center having at least one optical source and at least one optical receiver. The light powered communications system also includes a plurality of optically powered remote communication systems located remote from the audio control center, each of the optically powered remote communication systems being configured to receive an optical signal from the audio control center. The light powered communication system also includes at least one length of fiber optic cable between the audio control center and each of the optically powered remote communication systems.