Abstract:
Methods and apparatuses, including computer program code are disclosed. The apparatus may include at least one processor and at least one memory including computer program code. The at least one processor, the at least one memory, and the computer program code may be configured to cause the apparatus to generate a divergent beam for an optical source that is coincident with a divergent beam for an optical detector. The apparatus may determine an adjustment to a mirror to cause an optical alignment of an incoming beam with the optical detector based on at least an optical intensity across the optical detector, wherein the alignment is with respect to at least another apparatus. The apparatus may adjust a position of the mirror according to the determined adjustment, and change the divergent beam to a collimated beam to enable optical communications with the other apparatus via the collimated beam.
Abstract:
Verfahren und Anordnung zur Übertragung von Nutzsignal-Information (z.B. Sprache, Musik, Daten) mittels unterschiedlich linear polarisierter elektromagnetischer Wellen als Informationsträger. Die linear polarisierten elektromagnetischen Wellen haben jeweils einen anderen vorgebbaren Polarisationswinkel phi. Jede linear polarisierte Welle wird von einer anderen elektromagnetischen Ursprungswelle abgeleitet. Auf jede der linear polarisierten Wellen wird eine durch Modulation zu übertragende Nutzsignal-Information aufgeprägt. Empfangsseitig erfolgt eine polarisationswinkelspezifische Separierung der modulierten linear polarisierten elektromagnetischen Wellen und deren Demodulation.
Abstract:
The system and method uses free-space optics for telemetry between spacecraft for communication. The system and method uses bright light emitting diodes or other transmitters and a low-light photomultiplier tube or other receiver. Greater transmission distances are possible by using optical bandpass filters and baffles. The system and method are capable of achieving greater distances and data rates with the use of additional transmitters with greater optical power output, including laser diodes.
Abstract:
A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.
Abstract:
A free space optical communication system (10) including first and second mono-static transceivers (20a, 20b). Each transceiver (20a, 20b) includes a reflective assembly (40) defining a reflective surface (44) about a receiving end of a respective optical fiber (32) and configured to reflect optical signals (26) within a field of view of the transceiver (20a, 20b) as a modulated retro-reflective signal (28). Each mono-static transceiver (20a, 20b) includes an acquisition system (60) configured to detect a modulated retro-reflective signal (28) and adjust the alignment of the respective transceiver (20a, 20b) in response to a detected modulated retro-reflective signal (28). A mono-static transceiver and a method of aligning a mono-static transceiver are also provided.
Abstract:
An opto-mechanical deployable telescope includes a hub, at least one deployable multiple petal primary mirror mounted to the hub, a deployment assembly, and a deployment engine assembly. The deployment assembly is operable to move the at least one primary mirror between a stowed position and a deployed position. The deployment engine assembly is operable to power the deployment assembly using stored mechanical energy. The deployment assembly includes a kinematic or semi-kinematic interface between the hub and the at least one primary mirror to hold petals of the at least one primary mirror in alignment relative to each other in the deployed position.
Abstract:
Systems and methods in accordance with embodiments of the invention convert satellite signals to an intermediate frequency signal and selecting modulated digital data within the satellite signals for content decoding. One embodiment includes an optical low noise block converter (LNB) including a digital channelizer switch configured to select at least one content channel from an input signal including a plurality of content channels modulated onto a carrier and to output an optical signal including the selected at least one content channel.
Abstract:
Un procédé et un système de transmission optique par signaux laser en champ libre prévoit d'adapter un taux de codage d'une information utile à transmettre en fonction de variations d'une caractéristique de réception de signaux (S1) appartenant à une même session de communication. Le taux de codage est de préférence adapté dynamiquement pendant la session de communication. De cette façon, un compromis optimisé est réalisé, entre un débit utile qui est élevé et un taux d'erreur de bit après décodage qui est faible. Le procédé et le système associé permettent de prendre en compte en temps réel des conditions atmosphériques qui sont susceptibles de perturber la transmission de signaux laser (S2), lorsque les dits signaux laser traversent une partie de l'atmosphère terrestre (AT).
Abstract:
A free-space communication transceiver includes a telescope for transmitting and receiving laser beams, a tunable laser transmitter for generating a transmit laser beam modulated with data, a tunable optical receiver for processing a receive laser beam received from the telescope to recover data, and a tunable beamsplitter that directs the transmit laser beam to the telescope and directs the receive laser beam from the telescope to the optical receiver. Between the telescope and beamsplitter, the transmit and receive laser beams travel along a common optical axis as collinear collimated free-space beams. The transmit and receive laser beams operate at different wavelengths that can be interchanged, thereby support full-duplex operation. The beamsplitter employs a tunable etalon filter whose wavelength-dependent transmission characteristics are adjusted according to the transmit and receive wavelengths. Optionally, RF signals can additionally be couple to the common optical axis and transmitted and received by the telescope.