Abstract:
Die Erfindung betrifft einen Druckkopf (1) für einen 3D-Drucker, insbesondere Metalldrucker, umfassend ein Gehäuse (3), eine Vorrichtung (28) zur Zuführung eines Metalls (14), ein Reservoir (7, 27) für eine flüssige Phase (8) des Metalls (14), eine Düsenvorrichtung (2) mit einer Führungshülse (11) und einer Düsenplatte (9) und einen Kolben (5) mit einer Kolbenstange (17) und einem Stempel (18), wobei der Stempel (18), die Führungshülse (11) und die Düsenplatte (9) einen Verdrängerraum (21) ausbilden und der Stempel (18) und die Führungshülse (11) zumindest einen Bereich (40) zur Durchführung der flüssigen Phase (8) zwischen dem Reservoir (27) und dem Verdrängerraum (21) ausbilden, wobei der Druckkopf (1) eine Vorrichtung (60) zur lokalen Abkühlung der Düsenplatte (9) aufweist. Ferner umfasst die Erfindung ein Verfahren zur Inbetriebnahme eines Druckkopfes, wobei das Verfahren folgende Schritte umfasst: - Erzeugung der flüssigen Phase (8) des Metalls durch einen Induktor (35), - Einbringen des Stempels (18) in den Verdrängerraum (21) bis die Oberfläche (39) des Stempels (18) an der Oberfläche (49) der Düsenplatte (9) anliegt, - Abkühlung der Düsenplatte (9), bis die in der Austrittsöffnung (10) der Düsenplatte (9) befindliche flüssige Phase (8) des Metalls erstarrt, und - Befüllung des Verdrängerraums (21) mit flüssiger Phase (8) des Metalls durch Zurückziehen des Stempels (18) in eine Arbeitsposition innerhalb der Führungshülse (11), wobei die flüssige Phase (8) des Metalls aus dem Reservoir (27) durch den Bereich (40) in den Verdrängerraum (21) fließt.
Abstract:
A tank cleaning nozzle (2) configured to be mounted on a tank (6), wherein said tank cleaning nozzle (2) comprises an inlet (42), an outlet (26) and an interior space (54) being in fluid communication with the inlet (42) and the outlet (26), The tank cleaning nozzle (2) is configured to receive a pressurized liquid (36) through the inlet (42) and inject the liquid (36) through the outlet (26) into the tank (6), The tank cleaning nozzle (2) comprises a moveably arranged closing structure (34, 52) configured to close the outlet (26). The closing structure (34, 52) is arranged and configured to be moved into a position, in which the outlet (26) is provided with a free passage, through which the liquid (36) leaving the outlet (26) is injected into the interior space (54) without colliding with the closing structure (34, 52).
Abstract:
A multi-cone, multi-stage spray nozzle includes a nozzle body (102) and outer (104) and inner (106) valve stems. The nozzle body (102) defines an outer valve seat (120) disposed at its distal end (116). The outer valve stem (104) is slidably disposed in the nozzle body (102). The inner valve stem (106) is slidably disposed in the outer valve stem (104). The inner valve stem (106) occupies an open position and the outer valve stem (104) occupies a closed position upon the application of a first pressure on the distal ends (138, 126) of the inner and outer valve stems. And, the inner and outer valve stems (106, 104) both occupy open positions upon the application of a second pressure that is greater than the first pressure on the distal ends of the inner and outer valve stems (106, 104).
Abstract:
Dispenser head for a dispensing machine for products or fluids, comprising: a head body (2) having at least one primary tube (4); a sliding support (6) adapted to slide relative to the head body (2) along a sliding axis (x-x); a secondary tube (8), constrained to the sliding support (6), adapted to slide relative to the primary tube (4) parallel to the sliding axis (x-x), wherein a first end (8a) of the secondary tube (8) is in fluidic communication with the primary tube (4) in every position of the travel of the secondary tube (8); a rotatable nozzle (10) constrained to the head body (2) with freedom of rotation about an axis of rotation (y-y) parallel to the sliding axis (x-x), wherein the rotatable nozzle (10) is in fluidic communication with a second end (8b) of the secondary tube (8) in every position of the travel of the secondary tube (8). The rotatable nozzle (10) comprises, at a distal end thereof, an outlet hole (12) which is offset relative to the axis of rotation (y-y) for dispensing the fluid. Guiding means are provided, which are so designed that the sliding motion of the secondary tube (8) parallel to the sliding axis (x-x) will determine the rotary motion of the rotatable nozzle (10) about its axis of rotation (y-y). A terminal element (14) is located in contact with the distal end of the rotatable nozzle (10) and has a terminal hole (16). The rotatable nozzle (10) can take a dispensation angular position, in which the outlet hole (12) and the terminal hole (16) are aligned with each other, thereby allowing dispensation of the fluid, and a closed angular position, in which the outlet hole (12) is obstructed by the terminal element (14), thereby preventing dispensation of the fluid.
Abstract:
An anti-drip spray head (100) is disclosed comprising a spray plate (104) with outlets (110) for discharge of water and a flexible diaphragm (102) located behind the spray plate (104) to open and close the outlets (110) in response to water flow. The outlets (110) are closed by the diaphragm (102) when the water flow is turned off and, when the water flow is turned on, the diaphragm (102) is moved to open the outlets (110) by the increase in water pressure. The diaphragm (102) prevents residual water within the spray head (100) dripping from the outlets (110) when the water flow is turned off.
Abstract:
A rotary driven sprinkler with adjustable flow rate and distance control where the change in distance of the coverage outwardly from the sprinkler is directly proportional to the change in flow rate. The flow rate at a selected sprinkler design pressure and installed nozzle may be indicated on the top of the sprinkler nozzle housing and its distance of coverage may be set. Also a changeable nozzle with a settable stream elevation angle may be provided using the nozzle retention screw.
Abstract:
The invention relates to a device (10) for providing an aerosol from an aerosolizable material, the device comprising an aerosolization unit (300) through which pressure pulses of a carrier gas (60) are passed; a reservoir (100) comprising the aerosolizable material and which provides the aerosolizable material to the aerosolization unit (300) where the aerosolizable material is entrained by the carrier gas (60); a material providing valve (210) located between the reservoir (100) and the aerosolization unit (300) which opens in direction of the aerosolization unit (300) and which is opened and closed by a pressure difference between the reservoir (100) and the aerosolization unit (300) and which provides, in an open state, the aerosolizable material to the aerosolization unit (300).