Abstract:
A wireless communication network uses backhaul negotiation based upon static and dynamic resource assignment on jamming graphs. Static reuse factor design methods including fractional frequency reuse (FFR) are addressed. The jamming graph is used to summarize the interfering relationship between transmitters (nodes in the jamming graph). Negotiation-based algorithm is used to arrive at a static resource assignment so that a large reuse factor can be achieved while jamming scenario can be avoided. As a result of such algorithm, each transmitter is assigned some resources, over which traffic transmission can be done instantaneously to reduce the packet delay for short packets. Based on the result of static resource negotiation algorithm, a dynamic resource algorithm can be run, such that the resources assigned to different nodes can be share in a bursty traffic scenario to further reduce packet delay for larger packet size cases, while jamming be also avoided.
Abstract:
A prospective relay station sends a report indicative of radio resource sets/preamble sequences used by its neighbors. Where the reported radio resource sets comprise less than all available radio resource sets, a radio resource set that is not indicated in the report is assigned; else where the reported radio resource sets comprise all available radio resource sets, a resource set indicated in the report is assigned. A message is sent to the prospective relay station indicates the assigned radio resource set and an identifier for use as an enabled relay station. The message may include signal strength and IDs. Apparatus, methods and computer programs are detailed for both a base station and the relay node. Radio resource set re-assignment, managed mode relay operations (where the base station schedules traffic among relays using the same radio resource set), and power control of relays and associated mobile stations are also described.
Abstract:
A cellular communication system (100) a first Radio Network Controller (107) supporting different communication service types. A first resource controller (203) controls resource allocation for a first communication service type from a first resource partition and a second resource controller (205) controls resource allocation for a second communication service type from a second resource partition. A partition processor (207) partitions a shared resource into at least the first and second resource partition in response to a first admission failure measure for the first communication service type. Optionally, the partition processor (207) may partition the shared resource into at least the first and second resource partition in response to a second admission failure measure for the first communication service type.
Abstract:
A method for improving a frequency utilization efficiency for a wireless communication system having a plurality of cells includes the following steps. At least one primary channel is allocated for each cell, the primary channel being different from that of its neighboring cell. One or more secondary channels are allocated for each cell, which have the same frequencies as their corresponding primary channels but differ in configuration, the secondary channels being different in frequency from the primary channel of the same cell. The secondary channel of the cell is activated for carrying communication traffic when the primary channel of the same cell has a capacity of being used exceeding a predetermined threshold value.
Abstract:
The invention relates to a system an a method for self optimizing a radio communication network comprising a plurality of radio cells, the system means for monitoring the network resource consumption and quality parameters individually for each cell, and means for distributing the network traffic dynamically between neighboring radio cells in order to maintain satisfactory quality of service in each radio cell.
Abstract:
A method for improving a frequency utilization efficiency for a wireless communication system having a plurality of cells includes the following steps. At least one primary channel is allocated for each cell, the primary channel being different from that of its neighboring cell. One or more secondary channels are allocated for each cell, which have the same frequencies as their corresponding primary channels but differ in configuration, the secondary channels being different in frequency from the primary channel of the same cell. The secondary channel of the cell is activated for carrying communication traffic when the primary channel of the same cell has a capacity of being used exceeding a predetermined threshold value.
Abstract:
A channel allocation system for allocating channels in a frequency band to a plurality of radios in close proximity so as to minimize co-channel interference. One method for allocating channels involves initially tuning each of the plurality of radios to the same one of the plurality of channels. All of the radios then receive signals from whatever sources and a signal score is determined for each radio. The radios are then tuned to another one of the plurality of channels. The steps of receiving a signal and determining a signal score for each radio are repeated for each of the remaining channels until all channels have been used. The signal scores are then tested against a table of mapping schemes to determine maximum isolation.
Abstract:
A forward rescue procedure FRP for preventing loss of signal and dropped connections between a mobile station 10 and the infrastructure 14 in a wireless telecommunications network 12 is disclosed. The FRP allows wireless systems to recover from forward link failures at the mobile station that would otherwise result in dropped connections. Examples of failure scenarios that can be overcome using the FRP include forward link Layer 2 acknowledgement failures and loss of forward link signal due to a fade that causes loss of signal for a period of time exceeding a threshold value. In response to a potential connection drop situation, a mobile station will autonomously add base station pilot channels to the active set of its rake receiver in order to rescue the connection in danger of dropping. Concurrently, the wireless network infrastructure will initiate transmission on alternative forward link channels that are likely to be monitored by the mobile station during an FRP. If the same channels are monitored by the MS and transmitted on by the infrastructure, the connection in danger of dropping can be rescued.
Abstract:
A method and apparatus for determining an efficient and reliable power level for the MS's (24) transmitter for reverse link communications (22) during a rescue procedure to rescue dropped calls quickly and with a high success rate is disclosed. A mobile station's mean rescue transmission output power level is computed by first determining the mobile station's mean receive input power level when the mobile station transmits during a connection rescue procedure. This mean receive input power level is then adjusted using up to four parameters. These four variables include (1) a pre-rescue power delta, (2) a rescue interference delta, (3) a rescue delay compensation value, and (4) a pre-determined value.