Abstract:
Technology for an eNodeB operable to perform multiuser non-orthogonal superposition transmissions for multimedia broadcast multicast service (MBMS) is disclosed. The eNodeB can modulate a first physical multicast channel (PMCH) signal for MBMS with a first modulation and coding scheme (MCS). The eNodeB can modulate a second PMCH signal for MBMS with a second MCS. The eNodeB can multiplex the first PMCH signal and the second PMCH signal to form an aggregate PMCH signal. The eNodeB can transmit the aggregate PMCH signal to a plurality of UEs using multiuser non-orthogonal superposition for MBMS, wherein the first PMCH signal in the aggregate PMCH signal is transmitted using physical resource blocks (PRBs) that are partially or fully overlapped in time and frequency with PRBs of the second PMCH signal in the aggregate PMCH signal.
Abstract:
Systems and methods provide a receiver design capable of both wideband (high symbol rate) and narrowband (low symbol rate) operations requirements without compromising narrowband performance. Moreover, such a receiver design can be very low cost, and eschewing the need for any expensive and/or specialized elements. A receiver configured in accordance with various embodiments utilizes a fully integrated tuner in which narrowband filters are configured to be bypassable when in wideband (high symbol rate) mode in favor of fixed wideband filters. Additionally, an analog-to-digital converter (ADC) can be implemented with digital gain for wideband operation, as well as digital data bit mapping to accommodate industry standard application-specific integrated circuits (ASICs) interfaces, such as from a 12 bit ADC core to an 8 bit digital interface.
Abstract:
Certain aspects of the present disclosure present frame structures to support a plurality of standards, such as the IEEE 802.11ac in addition to the IEEE 802.11a/b/n/g. Preamble of the frame structure can be used by a receiver to detect transmission mode of the packet.
Abstract translation:本公开的某些方面呈现帧结构以支持多种标准,例如除IEEE 802.11a / b / n / g之外的IEEE 802.11ac。 接收机可以使用帧结构的前导码来检测分组的传输模式。
Abstract:
A method for transmitting a preamble for legacy support is provided. In a communication system for supporting at least one of a first system corresponding to a legacy system and a second system which corresponds to an evolved system and supports two or more scalable bandwidths, a method for transmitting a preamble for the second system is provided. A preamble sequence is generated on the basis of a smallest bandwidth of the two or more scalable bandwidths, the generated preamble sequence is mapped to a resource zone to have a repetition factor which is relatively prime to a repetition factor of a repetition factor of a preamble for the first system, and the preamble sequence mapped to the resource zone is transmitted as the preamble for the second system.
Abstract:
According to an aspect, a radio access network node supports the transmission of multi-user superposition transmissions, where multi-user superposition transmission comprises transmitting, in each of a plurality of time-frequency resource elements, a modulation symbol intended for a first UE and a modulation symbol intended for a second UE, using the same antennas and the same antenna precoding. The radio access network node receives multiple CSI reports from the first UE for a first reporting instance. One or more of the received multiple CSI reports correspond to one or more respective multi-user superposition transmission states. The radio access network node also determines whether to use multi-user superposition transmission or an orthogonal multiple access transmission for scheduling the first UE in a first scheduling interval, based on the received multiple CSI reports.
Abstract:
Bit permutation to bits of a codeword is performed such that: at least one spatial-multiplexing block is made up of bits from B/2 different cyclic-blocks; each constellation word of the at least one spatial-multiplexing block is made up of bits from B t /2 different cyclic blocks, B t being the number of bits of the constellation word; and each of the bit pairs of the constellation word is made up of bits from a common one of the B t /2 different cyclic blocks.
Abstract:
An improved mechanism is provided that facilitates transmission of small packets within an ad hoc peer-to-peer network. A small packet is identified to a receiver within a control channel so that its lower power can be considered in an interference management protocol implemented among local peer devices. In a traffic slot, a transmitter voluntarily backs down on the transmitter power as a smaller packet will require much lower signal-to-noise ratio. This will improve the signal energy per bit per noise power density for the transmission as well as minimize the interference caused to other wireless communications happening in the same spectrum.
Abstract:
A modulator and a modulation method for a communication device are disclosed. The modulator is configured to multiplex control symbols and data symbols for transmission in a signal based on information of the distance between the positions of at least two control symbols in a representation of symbol positions in the signal
Abstract:
A modulator and a modulation method for a communication device are disclosed. The modulator is configured to multiplex control symbols and data symbols for transmission in a signal based on information of the distance between the positions of at least two control symbols in a representation of symbol positions in the signal
Abstract:
According to an aspect, a radio access network node supports the transmission of multi-user superposition transmissions, where multi-user superposition transmission comprises transmitting, in each of a plurality of time-frequency resource elements, a modulation symbol intended for a first UE and a modulation symbol intended for a second UE, using the same antennas and the same antenna precoding. The radio access network node receives multiple CSI reports from the first UE for a first reporting instance. One or more of the received multiple CSI reports correspond to one or more respective multi-user superposition transmission states. The radio access network node also determines whether to use multi-user superposition transmission or an orthogonal multiple access transmission for scheduling the first UE in a first scheduling interval, based on the received multiple CSI reports.