Abstract:
A method of mineralizing calcium from industrial waste comprising extracting calcium ions from a suspension of calcium rich granular particles and aqueous ammonium nitrate to form a calcium-rich first fraction and a heavy second fraction. The heavy second fraction is separated from the first fraction and the calcium-rich first fraction is carbonated with a gas comprising carbon dioxide to form a suspension of precipitated calcium carbonate and aqueous ammonium nitrate. The precipitate is separated from the aqueous ammonium nitrate by centrifugal means and the separated heavy second fraction comprises an enriched weight percent of iron.
Abstract:
Calcium (Ca), manganese (Mn) and magnesium (Mg) carbonate plus lead (Pb) and zinc (Zn) sulphide minerals in a permeable host, crushed ore, concentrates or as mine discharge tailing are selectively solution mined (in-situ or ex-situ) with a selected acid e.g. acetic acid to extract Ca, Mn, and Mg followed by multivalent oxidizing salts e.g. ferric salts to extract Pb and Zn sequentially. For in-situ leaching, an inter relationship has been identified between pressure, temperature, target depth and leachate concentration such that carbonate leaching is performed in a manner to prevent carbon dioxide gas (CO 2 ) discharge thereby plugging host rock permeability avenues to preclude further leaching. This requires controlling the rate of acetic acid leaching to be in step with availability of solution to dissolve the resulting discharged CO 2 . Sulphide leaching is subsequently conducted on the carbonate-depleted host. The two resulting leachates are chemically treated to selectively recover extracted minerals as value added industrially ready products. The in situ method is particularly advantageous in preparing the high purity manganese products necessary for lithium ion batteries because it prevents occurrence of very fine metallic particles in the products that may happen during conventional mining. Alternatively, the in situ carbonate recovery steps can be independently employed; all in an environmentally friendly manner.
Abstract:
A milling apparatus is modified by electrically insulating the milling chamber to enhance the efficiency of tribochemical reactions between reactive compositions during milling. The enhanced level of tribochemical reactivity is attributed to the buildup of electrostatic charge in and on the milled chamber during mill operation. The insulated mills in accordance with the invention can be used in a wide variety of commercial applications generally involving tribomechanically induced redox chemistry, including ore extraction, precious metal extraction, production of ferrites and pigments, and waste processing.
Abstract:
A milling apparatus is modified by electrically insulating the milling chamber to enhance the efficiency of tribochemical reactions between reactive compositions during milling. The enhanced level of tribochemical reactivity is attributed to the buildup of electrostatic charge in and on the milled chamber during mill operation. The insulated mills in accordance with the invention can be used in a wide variety of commercial applications generally involving tribomechanically induced redox chemistry, including ore extraction, precious metal extraction, production of ferrites and pigments, and waste processing.
Abstract:
The invention relates to a process for separating and purifying multi-curie quantities 90Y of sufficient chemical and radiochemical purity suitable for use in medical applications without a series of 90Sr selective extraction chromatographic columns while minimizing loss of radioactive 90Sr parent and waste stream. The process includes dissolving a nitrate salt of an original 90Sr stock solution in H¿2?O creating a strontium nitrate solution; acidifying the strontium nitrate solution containing ?90¿Y with concentrated nitric acid; evaporating the strontium nitrate solution; filtering or centrifuging strontium nitrate solution to separate crystalline 90Sr nitrate salt from the solution; evaporating the remaining 90Y enriched supernate to dryness; dissolving the remaining 90Y enriched supernate in a strong acid; passing the solution through an yttrium selective extraction chromatographic column; rinsing the yttrium selective extraction chromatographic column with strong acid; and eluting yttrium from yttrium selective extraction column with strong acid.
Abstract:
Weak acid lixiviants are used to selectively extract calcium from various sources (e.g., steel slag, impure lime, dolomite). Preferably, non-amine weak acids (e.g., weak acids that do not include an amine) as lixiviants are used. Such lixiviants can be used in stoichiometric quantities relative to calcium content of the calcium source material.
Abstract:
리튬 추출 방법에 대한 것으로, 알칼리 토금속을 포함하는 리튬 함유 용액을 준비하는 단계; 상기 리튬 함유 용액 내 알칼리 토금속의 활동도를 제어하는 단계; 및 상기 리튬 함유 용액에 인 공급 물질을 투입하여 인산 리튬을 석출시키는 단계;를 포함하는 리튬 추출 방법을 제공한다.