Abstract:
A lighting module is provided. The lighting module includes a flexible substrate having a first side and a second side, a plurality of solid state light sources, and a flexible housing. The first side of the flexible substrate has conductive traces. The plurality of solid state light sources is placed on the first side of the flexible substrate. The plurality of solid state light sources is electrically connected to the conductive traces. The flexible housing has at least a first shape, which may be linear, and a second shape, which may be non-linear. The flexible housing includes a flexible superelastic material in an austenite phase. The flexible housing is placed in proximity to the flexible substrate to form the lighting module.
Abstract:
A luminescent converter for a light emitting diode is herein described. The converter comprises a translucent substrate and a thin-film layer deposited on the substrate wherein the thin-film layer is comprised of a phosphor. The translucent substrate may further comprise a solid, ceramic phosphor such as YAG:Ce.
Abstract:
There is herein described a luminescent ceramic converter that comprises a flat, monolithic piece of a ceramic material containing a luminescent species wherein a concentration of the luminescent species in a peripheral region of the converter is lower than in a central region of the converter.
Abstract:
Solid state light source driving and dimming systems are provided that enable a plurality of solid state light source (e.g., LED) driver circuits to be coupled to a single AC voltage source. The driver circuits may include constant current circuitry configured to generate a constant AC current from the AC voltage source, and rectifier circuitry configured to generate a DC current to drive the solid state light source (e.g., LEDs). Dimming control includes shunt circuitry operable with a PWM switch to shunt the AC voltage source during certain portions of a PWM signal and to decouple the shunt circuitry from the AC voltage source during other portions of the PWM signal. Shunting the AC voltage source causes the interruption of the DC current to effectively turn off the LEDs. Decoupling the shunt circuitry may improve overall efficiency of power transfer to the LEDs.
Abstract:
The present invention relates to a luminescent ceramic converter comprising a sintered, monolithic ceramic material that converts a light of a first wavelength to a light of a second wavelength, the ceramic material having substantially spherically shaped pores. The present invention also relates to methods for the manufacture of the luminescent ceramic converter that comprises the ceramic material having substantially spherically shaped pores.
Abstract:
A phosphor blend for an LED light source is provided wherein the phosphor blend comprises from about 7 to about 12 weight percent of a cerium-activated yttrium aluminum garnet phosphor, from about 3 to about 6 weight percent of a europium-activated strontium calcium silicon nitride phosphor, from about 15 to about 20 weight percent of a europium-activated calcium silicon nitride phosphor, and from about 55 to about 80 weight percent of a europium-activated calcium magnesium chlorosilicate phosphor. An LED light source in accordance with this invention has a B:G:R ratio for a 3200K tungsten balanced color film of X:Y:Z when directly exposed through a nominal photographic lens, wherein X, Y and Z each have a value from 0.90 to 1.10.
Abstract:
A phosphor blend is described wherein the blend consists of a red-emitting rare earth phosphor, a green-emitting rare earth phosphor, and a blue-emitting rare earth phosphor wherein the 50% size of the phosphors is between about 12 to 15 μm. The phosphor blend is incorporated into a fluorescent lamp having an increased efficacy. A dual layer coating may be used to provide an additional increase in efficacy.
Abstract:
An optical sensor system having a light source comprising a plurality of series connected light emitting diodes (LEDs). The series connected LEDs may be switched at a predetermined frequency.
Abstract:
A current source circuit to drive a light source in an optical sensor system is disclosed. The current source includes an inductor connected in series with a resistor, and a diode coupled in parallel with the inductor and resistor. The current source is configured to receive a regulated direct current (DC) voltage and to provide the current through the inductor to the light source when a switch is closed, and to divert current through the inductor to the diode when the switch is open.
Abstract:
An LED lamp including a light guide/light pipe, and a method of reflecting light using same, are disclosed. The LED lamp includes a transparent light pipe enclosed in an envelope, where the light pipe has a lower section and an upper section. The lamp also includes an LED in a recess at a lower end of the lower section, and a reflector formed by an indentation in an upper end of the upper section. The lower section may be a compound parabolic concentrator, and the upper section may be a tapered cylinder. The lower section of the light pipe collects light emitted from the LED, the upper section of the light pipe directs the collected light onto the reflector, and the reflector reflects the directed light in a radial direction.