Abstract:
Disclosed herein are quantum computing (QC) package structures, as well as related methods and devices. In some embodiments, a QC package may include: a package substrate; a quantum processing die coupled to the package substrate; and a lid above the quantum processing die such that the quantum processing die is between the package substrate and a top portion of the lid, wherein the lid is electrically coupled to the quantum processing die and to the package substrate. In some embodiments, a QC package may include: a package substrate; and a quantum processing die coupled to the package substrate; wherein the quantum processing die includes at least one first stop element, the package substrate includes at least one second stop element, and the first stop elements are aligned with the second stop elements to provide a mechanical stop structure between the quantum processing die and the package substrate
Abstract:
Embodiments of the invention include a reconfigurable communication system, that includes a substrate and a metamaterial shield formed over the substrate. In an embodiment, the metamaterial shield surrounds one or more components on the substrate. Additionally, a plurality of first piezoelectric actuators may be formed on the substrate. The first piezoelectric actuators may be configured to deform the metamaterial shield and change a frequency band that is permitted to pass through the metamaterial shield. Embodiments may also include a reconfigurable antenna that includes a metamaterial. In an embodiment, a plurality of second piezoelectric actuators may be configured to deform the metamaterial of the antenna and change a central operating frequency of the antenna. Embodiments may also include an integrated circuit electrically coupled to the plurality of first piezoelectric actuators and second piezoelectric actuators.
Abstract:
The systems and methods described herein provide a traveling wave launcher system physically and communicably coupled to a semiconductor package and to a waveguide connector. The traveling wave launcher system includes a slot-line signal converter and a tapered slot launcher. The slot-line signal converter may be formed integral with the semiconductor package and includes a balun structure that converts the microstrip signal to a slot-line signal. The tapered slot launcher is communicably coupled to the slot-line signal converter and includes a planar first member and a planar second member that form a slot. The tapered slot launcher converts the slot-line signal to a traveling wave signal that is propagated to the waveguide connector.
Abstract:
Discussed generally herein are methods and devices including or providing a magnetic, detachable, conductive connector to provide an electrical and mechanical connection between parts. A device can include a first substrate, at least one electric component on or at least partially in a first surface of the first substrate, an adhesive on the first surface of the first substrate to temporarily attached the device to skin of a user, a contact pad electrically coupled to an electric component of the at least one electric component, the contact pad on or at least partially in a second surface of the substrate, the first surface opposite the second surface, and a conductive magnetic connector electrically and mechanically connected to the contact pad through a first conductive adhesive.
Abstract:
Embodiments of the invention include an active venting system. According to an embodiment of the invention, the active venting system may include a substrate having one or more seams formed through the substrate. In order to open the vents defined by the seams through the substrate, a piezoelectric layer may be formed proximate to one or more of the seams. Additional embodiments may include a first electrode and a second electrode that contact the piezoelectric layer in order to provide a voltage differential across the piezoelectric layer. In an embodiment the active venting system may be integrated into a garment. In such an embodiment, the garment may also include an electronics module for controlling the actuators. Additionally, conductive traces may be printed on the garment or sewn into the garment to provide electrical connections from the electronics module to each of the piezoelectric actuators.
Abstract:
Embodiments of the invention include a temperature sensing device that includes a base structure that is positioned in proximity to a cavity of an organic substrate, an input transducer coupled to the base structure, and an output transducer coupled to the base structure. The input transducer includes a first piezoelectric material to generate vibrations which are transmitted on the base structure in response to input signals being applied to the input transducer. The output transducer includes a second piezoelectric material to receive the vibrations and to generate output signals which are used to determine a change in ambient temperature.
Abstract:
Embodiments of the invention include a display formed on an organic substrate and methods of forming such a device. According to an embodiment, an array of pixel mirrors may be formed on the organic substrate. For example, each of the pixel mirrors is actuatable about one or more axes out of the plane of the organic substrate. Additionally, embodiments of the invention may include an array of routing mirrors formed on the organic substrate. According to an embodiment, each of the routing mirrors is actuatable about two axes out of the plane of the organic substrate. In embodiments of the invention, a light source may be used for emitting light towards the array of routing mirrors. For example, light emitted from the light source may be reflected to one or more of the pixel mirrors by one of the routing mirrors.
Abstract:
Embodiments of the invention include a piezo-electric mirror in an microelectronic package and methods of forming the package. According to an embodiment the microelectronic package may include an organic substrate with a cavity formed in the organic substrate. In some embodiments, an actuator is anchored to the organic substrate and extends over the cavity. For example, the actuator may include a first electrode and a piezo-electric layer formed on the first electrode. A second electrode may be formed on the piezo-electric layer. Additionally, a mirror may be formed on the actuator. Embodiments allow for the piezo-electric layer to be formed on an organic package substrate by using low temperature crystallization processes. For example, the piezo-electric layer may be deposited in an amorphous state. Thereafter, a laser annealing process that includes a pulsed laser may be used to crystallize the piezo-electric layer.
Abstract:
An integrated circuit that includes a substrate having a shape memory material (SMM), the SMM is in a first deformed state and has a first crystallography structure and a first configuration, the SMM is able to be deformed from a first configuration to a second configuration, the SMM changes to a second crystallography structure and deforms back to the first configuration upon receiving energy, the SMM returns to the first crystallography structure upon receiving a different amount of energy; and an electronic component attached to substrate. In other forms, the SMM is in a first deformed state and has a first polymeric conformation and a first configuration, the SMM changes from a first polymeric conformation to a second polymeric conformation and be deformed from a first configuration to a second configuration, the SMM changes returns to the first polymeric conformation and deforms back to the first configuration upon receiving energy.
Abstract:
A multi-chip package includes a substrate (110) having a first side (111), an opposing second side (112), and a third side (213) that extends from the first side to the second side, a first die (120) attached to the first side of the substrate and a second die (130) attached to the first side of the substrate, and a bridge (140) adjacent to the third side of the substrate and attached to the first die and to the second die. No portion of the substrate is underneath the bridge. The bridge creates a connection between the first die and the second die. Alternatively, the bridge may be disposed in a cavity (615, 915) in the substrate or between the substrate and a die layer (750). The bridge may constitute an active die and may be attached to the substrate using wirebonds (241, 841, 1141, 1541).