Abstract:
The invention is an array of reflectors produced by adjoining 8 units of trihedral corner reflectors with specific angles to attain bicentric, strong and consistent back reflections of radar waves to be utilized for providing an efficient deception regarding the radars of radar guided missiles and breaking the lock of these radar guided missiles. This array was opted for attaining a strong back reflection on the desired angle range. Each of the 8 corners provide strong back reflections over 60 degrees on horizontal angles and thus, a whole corner reflector can be detected by radar systems from any angle when the reflector is rotated 360 degrees. Periodical minimum radar cross section value is increased by this means, and thus the average is raised. The radar cross section value does not almost decrease for different radar frequencies for incident angles up to +/- 10 degrees on vertical angle, and no blind angle zones are created with respect to radar cross section -.
Abstract:
A spherically constrained optical seeker assembly includes a spherical lens having an outer surface, an optical sensor assembly associated with the spherical lens, and a gimbal assembly. The optical sensor assembly is coupled to the gimbal assembly. The gimbal assembly is configured to move the optical sensor assembly to at least one desired position on the outer surface of the spherical lens. A method of manipulating the optical sensor assembly includes positioning the optical sensor assembly with respect to the spherical lens and moving the optical sensor assembly to at least one desired position with respect to the outer surface of the spherical lens by the gimbal assembly.
Abstract:
Techniques are provided for determination of a guided-munition orientation during flight based on lateral acceleration, velocity, and turn rate of the guided-munition. A methodology implementing the techniques, according to an embodiment, includes obtaining a lateral acceleration vector measurement and a velocity of the guided-munition, and calculating a ratio of the two, to generate an estimated lateral turn vector of the guided-munition. The method also includes integrating the estimated lateral turn vector, over a period of time associated with flight of the guided-munition, to generate a first type of predicted attitude change. The method further includes obtaining and integrating a lateral turn rate vector measurement of the guided-munition, over the period of time associated with flight of the guided-munition, to generate a second type of predicted attitude change. The method further includes calculating a gravity direction vector based on a difference between the first and second types of predicted attitude change.
Abstract:
The presently disclosed subject matter includes a computerized method and system for determining miss-distance between platforms. The proposed method and system make use of an electro optic sensor (e.g. camera) mounted on one of the platforms for obtaining additional data which is used for improving the accuracy of positioning data obtained from conventional positioning devices. A navigation error is calculated where the relative position of the two platforms is converted to the camera reference frame. Once the navigation error is available, it can be used to correct a measured miss-distance.
Abstract:
Ce radar (20), destiné à un système (16) de guidage autonome d'une plateforme, comprend un bâti (30), une antenne émettrice-réceptrice (32) pour l'émission et la réception d'une onde électromagnétique émise dans une direction de pointage (P), et un système de pointage (38) pour la modification de l'orientation de la direction de pointage (P) par rapport au bâti (30). Le système de pointage (38) comprend un dispositif de pivotement primaire (60) pour faire pivoter la direction de pointage (P) par rapport au bâti (30) autour d'un axe primaire (R-R'), un dispositif de pivotement secondaire (62) pour faire pivoter de la direction de pointage (P) par rapport au bâti (30) autour d'un axe secondaire (S-S') orthogonal à l'axe primaire (R-R'), et un dispositif de pivotement tertiaire (64) pour faire pivoter la direction de pointage (P) par rapport au bâti (30) autour d'un axe tertiaire (G-G') orthogonal à l'axe secondaire (S-S'). Le dispositif de pivotement tertiaire (64) est constitué par un module de balayage électronique autour de l'axe tertiaire (G-G').
Abstract:
An ordnance munition is included in an intelligent ordnance projectile delivery system and equipped with targeting and guidance systems that allow the ordnance munition to collaborate with other devices to intelligently select targets and/or to guide the ordnance munition to its selected target. The ordnance munition may be configured to generate first location information based on its determined approximate location, send the generated first location information to a wireless transceiver in proximity to the first ordnance munition, and receive location information from the wireless transceiver in response. The ordnance munition may determine its more precise location based on the received location information, and generating second location information based on the more precise location. The ordnance munition may change or adjust its flight path or trajectory based on the generated second location information.
Abstract:
Selon l'invention, on met en œuvre un modèle numérique de terrain MNT pour déterminer une plage de valeurs de distance (dimin - dimax) à l'intérieur de laquelle se trouve ladite distance émetteur E - récepteur R et, à l'intérieur de ladite plage de valeurs, on calcule une pluralité de distances théoriques, à chacune desquelles sont associés l'angle d'azimut et l'angle de hauteur correspondants. Les angles d'azimut et de hauteur ainsi calculés sont comparés aux mesures des angles d'azimut et de hauteur de la ligne de visée LVi sous laquelle le récepteur R observe l'émetteur E.
Abstract:
A system for inhibiting the electronic system of a target object is provided. The system comprises an Electronic Counter Measure (ECM) unit, and a projectile for carrying the ECM unit towards the target object.
Abstract:
Vorgeschlagen werden ein Verfahren und eine Vorrichtung (100) zum Bereitstellen eines Scheinzieles durch Täuschkörper (9) zum Schutz eines Fahrzeuges und / oder Objektes (1) vor radargelenkten Flugkörpern (2). Hierbei wird nach Identifizierung des radargelenkten Flugkörpers (2) und Berechnung eines Täuschkörpermusters (20) entsprechend der Schussauslösung eine die Darstellung des Täuschkörpermusters (20) als Punktwolke der Zerlege- bzw. Detonationspunkte des Scheinziels in Form von Polarkoordinaten vorgenommen, in diesen Polarkoordinaten wird dann eine "Cut-Off"-Distanz zur Bestimmung eines Abwehrradius (P r ) ermittelt und ein minimaler Abstand zwischen den Zerlege- bzw. Detonationspunkten innerhalb des Abwehrradius (P r ) frei wählbar festgelegt. Das Optimieren des Scheinziels (10) erfolgt dann anhand der "Cut-Off"-Distanz und dem minimalen Abstand zwischen den Zerlege- bzw. Detonationspunkten. Im Ergebnis dieser Berechnung werden nur die Täuschkörper (9) ausgestoßen, die die Bedingungen erfüllen, d.h. die den minimalen Abstand zwischen den Zerlege- bzw. Detonationspunkten innerhalb des Abwehrradius (P r ) im optimierten Scheinziel (10) besitzen.
Abstract:
A tracking system for tracking a target is described. The tracking system comprises a radiation source capable of generating high data rate optical pulse patterns at low pulse energies. A method of tracking a target is also described, the method comprising the step of transmitting a high data rate optical pulse pattern at a low pulse energy from a transmitter; illuminating the target with said pulse pattern; and confirming that the target is illuminated by the pulse associated with the transmitter, thereby confirming the target. The use of the system and method as optical communication means is also disclosed.