Abstract:
A data storage system (100) includes one or more individual ramps (166) for each to slidably receive the free end of a tab member (160) connected to one of one or more transducer heads (130) mounted on a head actuator assembly (140). Each head (130) is disposed to fly in data transfer relationship adjacent to a respective rotating disk (108).
Abstract:
A magnetic head is described for use in a disk drive having a disk (30) that is rotated during operation of the disk drive and stationary when the disk drive is non-operational. The disk (30) includes a surface containing data tracks. The magnetic head comprises a slider (10) including a forward edge (13) and an air bearing surface. A read/write transducer (15) is mounted at the trailing edge (14) of the slider (10). The slider (10) and transducer (15) are mounted within the disk drive, relative to the surface of the rotating disk (30), to fly above the surface of the disk (30), to fly above the surface of the disk (30) during rotation of the disk (30), for reading and writing data from and to the data tracks, and to come to rest on the surface of the disk during non-operation of the disk drive. An array of overcoat protrusions (20) is formed on and spaced across the slider to cover a predetermined and discrete area of the slider (10) in a manner so that when the slider (10) and transducer (15) come to rest on the surface of the disk (30), contact with the surface of the disk occurs only at the array of overcoat protrusions (20).
Abstract:
Embodiments of the present disclosure generally relate to a vertical cavity surface emitting laser, a head gimbal assembly for mounting a vertical cavity surface emitting laser, and devices incorporating such articles. In an embodiment, a vertical cavity surface emitting laser (VCSEL) device is provided. The VCSEL device includes a chip for mounting on a slider and two laser diode electrodes. The chip has six surfaces, wherein a first surface of the chip is for facing the slider, a second surface of the chip is opposite the first surface, and the two laser diode electrodes are positioned in any combination on one or more of a third surface, a fourth surface, a fifth surface, or a sixth surface of the chip.
Abstract:
Devices having air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein at least one of a portion of the peg, a portion of the disc, or a portion of both the peg and the disc include a multilayer structure including at least two layers including at least one layer of a first material and at least one layer of a second material, wherein the first material and the second material are not the same and wherein the first and the second materials independently include aluminum (Al), antimony (Sb), bismuth (Bi), boron (B), barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), erbium (Er), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), indium (In), iridium (Ir), iron (Fe), lanthanum (La), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), osmium (Os), palladium (Pd), platinum (Pt), rhenium (Re), rhodium (Rh), ruthenium (Ru), scandium (Sc), silicon (Si), silver (Ag), strontium (Sr), tantalum (Ta), thorium (Th), tin (Sn), titanium (Ti), vanadium (V), tungsten (W), ytterbium (Yb), yttrium (Y), zirconium (Zr), or combinations thereof.
Abstract:
Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
Abstract:
A read/write head is provided with a body having a body length and a support surface to support data storage media as the data storage media is conveyed longitudinally across the support surface. The support surface of the body is curved about an axis in a widthwise direction of the elongate body. The support surface of the body has a reduced longitudinal length relative to the body length only in an intermediate region. At least one read/write device is provided on the intermediate region of the support surface of the body to read and/or write data on the data storage media as the data storage media is conveyed across the support surface. A tape drive system is provided with the read/write head, the at least one read/write device, and a motor to drive the data storage tape.
Abstract:
An apparatus includes a near-field transducer at or near an air bearing surface of the apparatus. A write pole is disposed at or near the air bearing surface and proximate the near-field transducer, respectively. A thermal sensor is disposed at the air bearing surface and within a protrusion region of the air bearing surface defined relative to at least one of the near-field transducer and the write pole. The thermal sensor is configured to produce a signal indicative of a temperature at the protrusion region.
Abstract:
An apparatus that includes a near field transducer, the near field transducer including silver (Ag) and at least one other element or compound, wherein the at least one other element or compound is selected from: copper (Cu), palladium (Pd), gold (Au), zirconium (Zr), zirconium oxide (ZrO), platinum (Pt), geranium (Ge), nickel (Ni), tungsten (W), cobalt (Co), rhodium (Rh), ruthenium (Ru), tantalum (Ta), chromium (Cr), aluminum (Al), vanadium (V), iridium (Ir), titanium (Ti), magnesium (Mg), iron (Fe), molybdenum (Mo), silicon (Si), or combinations thereof; oxides of V, Zr, Mg, calcium (Ca), Al, Ti, Si, cesium (Ce), yttrium (Y), Ta, W or thorium (Th), Co, or combinations thereof; or nitrides of Ta, Al, Ti, Si, indium (In), Fe, Zr, Cu, W, boron (B), halfnium (Hf), or combinations thereof.