Abstract:
An illumination element such as an optical waveguide for illuminating a surgical field in a patient has a light input section, a light transmitting section, and a light output section. The light input section is optically coupled to a proximal section of the light transmitting section and inputs light into the illumination element. The light transmitting section transmits the light preferably by total internal reflection or by other transmission means. The light output section is adjacent a distal section of the light transmitting section which has a light extraction area from which the light exits with an energy density. The light extraction area comprises a bore extending at least partially inward into a distal end of the light output section. A plurality of optical structures is disposed on an inner wall of the bore. The optical structures are configured to extract light from the light output section and direct the extracted light toward the surgical field.
Abstract:
A fiber optic camera system may include a fiber optic camera and a video processing console. The camera may include an elongate sheath having a proximal end and a distal end, and the sheath may contain one or more illumination optical fibers and an imaging bundle having at least one fiber optic clad and multiple fiber optic cores. The camera may further include a camera body fixedly attached to the proximal end of the elongate sheath, and the camera body may contain an imaging sensor optically coupled to a proximal end of the imaging bundle and configured to generate image data and an illumination source optically coupled to proximal ends of the illumination fibers. In some embodiments, the camera body has no connection member for connecting a secondary illumination source to the camera.
Abstract:
Die vorliegende Erfindung betrifft eine Vorrichtung mit einer Raman-Sonde. Die Aufgabe der Erfindung, ein Vorrichtung mit einer Raman-Sonde anzugeben, welche eine endoskopische Untersuchung von biologischem Gewebe in vivo ermöglicht, wird dadurch gelöst, dass die Vorrichtung eine Laserlichtquelle (12), einen Detektor (18), eine Detektions- und Steuereinheit (16), ein Raman-Spektrometer (17), eine externe Faser (9) sowie eine, ein Bündel (13) von Lichtleitern mit mindestens einer Faser (1) enthaltende Messsonde (14) umfasst, wobei ein Fokussierelement am Kopf der Messsonde (14) in Form zweier transparenter optischer Linsen mit dazwischen positioniertem transparenten optischen Kubus angeordnet ist und in dem Kubus eine Filterschicht, ein Absorber, ein Spiegel und ein Filter eingebracht sind, wobei Anregungslicht von der Laserlichtquelle (12) über die Faser (1) durch den Kubus hindurch auf eine biologische Gewebeprobe führbar und Raman-Signalstrahlung von der Gewebeprobe kommend durch den Kubus hindurch über die externe Faser (9) in das Raman-Spektrometer (17) leitbar ist.
Abstract:
The invention relates to a device which includes a micro-endoscope (2) and a micromanipulator (4) precision movement system (3). The micro-endoscope comprises a body, an ultrafine endoscopic probe (11), and an optical connection part (12), which is connected to the body (8) of the endoscope via an optical line and to an image capture and display device. The endoscopic probe (11) includes a tubular sheath that surrounds an illumination channel (16) and an image channel (17) containing ultrafine optical fibers (20), as well as an operating channel (18) used for passing instruments therethrough. Said channels extend into the body of the micro-endoscope (2) and, in the case of the illumination channel (16) and the image channel (17), up to the optical connection part (12). In an alternative embodiment, a digital camera and portable microcomputer are used. The invention is useful for human and veterinary medicine, as well as for corresponding scientific laboratory research.
Abstract:
An exemplary embodiment includes an endoscope connector for connecting any given one of a plurality of working assemblies to an imaging assembly.
Abstract:
A laser video endoscope provides a small diameter (25 mils) probe. This size probe requires a minimum access lesion. The tradeoff that produces such a probe includes reducing the laser guide fiber to 100 microns in diameter, employing an image bundle having approximately 6,000 optical fibers and an illumination bundle having only about 210 optical fibers. The probe where it extends into the handle has a 45 mil outer diameter and a 5 mil thick sidewall to provide resistance to breaking at the juncture with the handle. The probe is rigid, preferably metal. The probe has a larger diameter proximal portion and a smaller diameter distal portion. The distal portion of the probe has a length limited to about 710 mils. A green laser of 532 nanometers wavelength provides a collimated laser beam that causes minimal loss in the 100 micron laser optical fiber.