Abstract:
A method for estimating the location of a blindfolded node (235) in a wireless network having reference nodes (225, 230) is provided. The reference nodes (225, 230) are combined into pairs (301) and each pair is checked to determine if the reference nodes are within each other's communication rage (304). A plurality of probable regions (315) for the blindfolded node are obtained (313, 315). These probable regions are overlapped (320), and the blindfolded node's estimated location is estimated to be the geometric center of the overlapped regions (325).
Abstract:
A method and location determination module is provided for determining a location of one of a plurality of units (16A, 16B, 16C, 12, 14) using neighbor lists (212). Each unit is communicatively coupled to at least some of the other plurality of units (16A, 16B, 16C, 12, 14), where at least some of the plurality of units (16A, 16B, 16C, 12, 14) are reference units, whose locations are known. The units communicate with other (16A, 16B, 16C, 12, 14) nearby units within communication range, to establish neighbor lists (212). A unit to be located then identifies an aggregate value corresponding to the number of occurrences of the reference units in the neighbor list (212) of the unit to be located and the neighbor lists (212) of each of a group of associated units. The location of the unit to be located is then determined, based upon the known locations of the reference units and the number of identified occurrences of the reference units in the corresponding neighbor lists (212).
Abstract:
A location technique is utilized where channel-model parameters are originally estimated prior to location taking place. Location then takes place using a first set of known-located nodes, and the channel-model parameters are updated based on the distances resulting from the location estimate. Once the channel-model parameters have been updated, location again takes place using a second set of known-located nodes, node distances are calculated based on the produced locations and the channel-model parameters are again updated. This process continues until no significant change is observed between the previous and the newly estimated location, or until a maximum number of iterations is reached.
Abstract:
A method and apparatus for locating a remote unit (or node) is provided herein. During operation, location-finding equipment (106) will determine a gross location of non-located nodes (104) by determining distances of the nodes (104) to reference nodes (105). Additionally an error estimate in the location for each node is determined. A first subset of nodes having relatively lower error estimates are "promoted" to reference nodes, and a second subset of nodes having higher error estimates are again located based on a distance to the newly-promoted reference nodes.
Abstract:
A method and apparatus for locating a remote unit (or node) is provided herein. During operation, location-finding equipment (106) will determine a gross location of non-located nodes (104) by determining distances of the nodes (104) to reference nodes (105). Additionally an error estimate in the location for each node is determined. A first subset of nodes having relatively lower error estimates are "promoted" to reference nodes, and a second subset of nodes having higher error estimates are again located based on a distance to the newly-promoted reference nodes.
Abstract:
A method, wireless device, and information processing system dynamically update spectrum sensing groups in a wireless communication system. A set of wireless devices (114) currently allocated to a spectrum sensing group is identified. Each wireless device (114, 116, 118) in the set performs spectrum sensing on one or more wireless communication channels. Spectrum sensing performance data (144) is analyzed for each such wireless device (114) in the set. The spectrum sensing performance data (144) indicates wireless communication performance of a wireless device (114) associated with the spectrum sensing performance data with respect to detecting a transmitted signal on the one or more communication channels. Wireless device membership of the set of wireless devices (114, 116, 118) allocated to the spectrum sensing group is dynamically adjusted based on the analysis.
Abstract:
A method, wireless device, and information processing system dynamically update spectrum sensing groups in a wireless communication system. A set of wireless devices (114) currently allocated to a spectrum sensing group is identified. Each wireless device (114, 116, 118) in the set performs spectrum sensing on one or more wireless communication channels. Spectrum sensing performance data (144) is analyzed for each such wireless device (114) in the set. The spectrum sensing performance data (144) indicates wireless communication performance of a wireless device (114) associated with the spectrum sensing performance data with respect to detecting a transmitted signal on the one or more communication channels. Wireless device membership of the set of wireless devices (114, 116, 118) allocated to the spectrum sensing group is dynamically adjusted based on the analysis.
Abstract:
A wireless communication system and method for determination of the location of a location-incapable device of a decentralized wireless communication network . Upon receipt of location determination information, relevant to the location of the location-incapable device in the network and sufficient to perform a calculation of the location of the location-incapable device, a location-capable device of the network may calculate the location of the location-incapable device and make this information available to one or more devices of the network.
Abstract:
A method for estimating the location of a blindfolded node (235) in a wireless network having reference nodes (225, 230) is provided. The reference nodes (225, 230) are combined into pairs (301) and each pair is checked to determine if the reference nodes are within each other's communication rage (304). A plurality of probable regions (315) for the blindfolded node are obtained (313, 315). These probable regions are overlapped (320), and the blindfolded node's estimated location is estimated to be the geometric center of the overlapped regions (325).
Abstract:
A wireless communication system and method for determination of the location of a location-incapable device of a decentralized wireless communication network . Upon receipt of location determination information, relevant to the location of the location-incapable device in the network and sufficient to perform a calculation of the location of the location-incapable device, a location-capable device of the network may calculate the location of the location-incapable device and make this information available to one or more devices of the network.