摘要:
A broadband spectral power generator in a multimode optical fiber utilizes a standard multimode fiber that is coiled. A plate is placed on the coiled fiber and a force is applied to compresses the coiled fiber and thereby increase the interactions between the compressed windings and induce modal mixing and birefringence in the fiber. In addition, the compression causes additional non-linear processes to be excited and occur in the compressed fiber coil to generate more broadband light. This allows for better "mixing" of the spatial beam in the multimode fiber coil and allows for the various modes to overlap. The multimode fiber coil is made of silica, silicate, germinate, phosphate, fluoride, chalcogenide, or telluride. The compressed coiled fiber may be driven by a laser providing more than one wavelength output and this greatly increases the amount of nonlinear mixing in the fiber for a greatly enhanced spectral coverage.
摘要:
A combined large mode area, fiber cable amplifier and laser beam transport fiber cable is disclosed that transports laser beams output from a compact, high power, solid state laser to remote locations while improving the beam quality and amplifying the beam to compensate for losses in the fiber cable. The fiber cable is clad and is cladding pumped to compensate for the losses in the fiber cable.
摘要:
A system and method for efficiently combining multiple laser beams into a single frequency by invoking stimulated Brillouin scattering (SBS) in a dual core optical fiber is disclosed. The method and apparatus essentially becomes a brightness converter for the input laser beams. An SBS seed is generated in a long length of fiber or by a diode and is launched into the back-end of the SBS combining optical fiber. Various single-frequency pump beams are launched into the front-end of the same fiber. The seed acts to lower a threshold for SBS in the fiber, thus invoking the nonlinearity. Provided the various pump beams are close in frequency and seed/pump modes overlap, each acts to amplify the seed through the nonlinear SBS process, providing an output signal which is brighter than the combined pump beams.
摘要:
Techniques and architecture are disclosed for controlling the temperature of a fiber laser system. In some embodiments, a single thermoelectric cooler (TEC) may be utilized to control the temperature of multiple system components. In some embodiments, a TEC may be physically/thermally coupled to a laser diode, which in turn may be physically/thermally coupled with a mounting plate to which one or more fiber grating holders are physically/thermally coupled, and an optical fiber that is operatively coupled with the laser diode may be physically/thermally coupled with the one or more fiber grating holders. In some embodiments, this may provide a thermal pathway/coupling between the optical fiber (e.g., its fiber grating(s)), and the TEC. In some embodiments, this may reduce/minimize the quantity of temperature control components, reduce system size/complexity, increase system dependability, and/or increase system performance/efficiency. Numerous configurations and variations will be apparent in light of this disclosure.
摘要:
Techniques are disclosed for improving pump absorption and efficiency for fiber lasers and amplifiers, for instance. In some embodiments, the techniques are implemented by applying a partially reflective coating on a fiber end-face to double -pass any unabsorbed or otherwise excess pump light in the cladding of a fiber. While being reflective to pump wavelengths, the coating can be non-reflective at the lasing wavelength, so as to avoid unwanted feedback into the system. The benefits of this approach include that excess pump power can be effectively utilized to add more power to the laser output. In addition, the double-pass technique allows for the use of a shorter fiber length, which in turn allows for more compact system designs, saves on material costs, and facilitates manufacturability.
摘要:
A combined large mode area, fiber cable amplifier and laser beam transport fiber cable is disclosed that transports laser beams output from a compact, high power, solid state laser to remote locations while improving the beam quality and amplifying the beam to compensate for losses in the fiber cable. The fiber cable is clad and is cladding pumped to compensate for the losses in the fiber cable.
摘要:
A broadband spectral power generator in a multimode optical fiber utilizes a standard multimode fiber that is coiled. A plate is placed on the coiled fiber and a force is applied to compresses the coiled fiber and thereby increase the interactions between the compressed windings and induce modal mixing and birefringence in the fiber. In addition, the compression causes additional non-linear processes to be excited and occur in the compressed fiber coil to generate more broadband light. This allows for better "mixing" of the spatial beam in the multimode fiber coil and allows for the various modes to overlap. The multimode fiber coil is made of silica, silicate, germinate, phosphate, fluoride, chalcogenide, or telluride. The compressed coiled fiber may be driven by a laser providing more than one wavelength output and this greatly increases the amount of nonlinear mixing in the fiber for a greatly enhanced spectral coverage.
摘要:
Techniques are disclosed for monitoring parameters in a high power fiber laser or amplifier system without adding a tap coupler or increasing fiber length. In some embodiments, a cladding stripper is used to draw off a small percentage of light propagating in the cladding to an integrated signal parameter monitor. Parameters at one or more specific wavelengths (e.g., pump signal wavelength, signal/core signal wavelength, etc) can be monitored. In some such cases, filters can be used to allow for selective passing of signal wavelength to be monitored to a corresponding parameter monitor. The filters can be external or may be integrated into a parameter monitor package that includes cladding stripper with integrated parameter monitor. Other parameters of interest (e.g., phase, wavelength) can also be monitored, in addition to, or as an alternative to power. Numerous configurations and variations will be apparent in light of this disclosure (e.g., system-on-chip).