Abstract:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
Abstract:
Described herein is a silent period method and apparatus for dynamic spectrum management. The methods include configuration and coordination of silent periods across an aggregated channel in a wireless communication system. A silent period management entity (SPME) dynamically determines silent period schedules for channels based on system and device information and assigns a silent period duration and periodicity for each silent period. The SPME may reconfigure the silent period schedule based on system delay, system throughput, channel quality or channel management events. A silent period interpretation entity (SPIE) receives and implements the silent period schedule. The silent periods for the channels may be synchronized, independent, or set-synchronized. Interfaces for communicating between the SPME, SPIE, a channel management function, a medium access control (MAC) quality of service (QoS) entity, a sensing/capabilities database, a MAC layer management entity (MLME) and a wireless receive/transmit unit (WTRU) MLME are described herein.
Abstract:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto acces point and a BWM server, a BWM server may need deep packet inspection capabilities.
Abstract:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
Abstract:
A method and apparatus are described for performing channel aggregation to communicate over a non-contiguous spectrum, such as television white space (TVWS), using a plurality of aggregated channels including a primary channel and at least one non-primary channel (e.g., a secondary channel, a tertiary channel or a quaternary channel). Carrier sense multiple access (CSMA) may be performed on the primary channel to obtain access to the primary channel. After waiting an arbitration interframe space (AIFS) and potentially performing backoff on the primary channel, the aggregated channels may be used for transmission. A buffer controller may be used to create, for each of a plurality of access classes (ACs), a logic buffer for each of the channels. A frame controller may be used to provide the buffer controller with aggregated medium access control (MAC) protocol data unit (A-MPDU) frame information, and control aggregation and fragmentation processes.
Abstract:
Described herein is a silent period method and apparatus for dynamic spectrum management. The methods include configuration and coordination of silent periods across an aggregated channel in a wireless communication system. A silent period management entity (SPME) dynamically determines silent period schedules for channels based on system and device information and assigns a silent period duration and periodicity for each silent period. The SPME may reconfigure the silent period schedule based on system delay, system throughput, channel quality or channel management events. A silent period interpretation entity (SPIE) receives and implements the silent period schedule. The silent periods for the channels may be synchronized, independent, or set-synchronized. Interfaces for communicating between the SPME, SPIE, a channel management function, a medium access control (MAC) quality of service (QoS) entity, a sensing/capabilities database, a MAC layer management entity (MLME) and a wireless receive/transmit unit (WTRU) MLME are described herein.
Abstract:
A method for managing channel selection in a dynamic spectrum management network includes receiving a spectrum allocation request; based on the source of the spectrum allocation request, checking for available channels; based on the source of the spectrum allocation request, collecting sensing and usage data for the available channels; providing the channel usage data to an entity that transmitted the spectrum allocation request.
Abstract:
Described herein are methods, metrics and apparatus for bandwidth allocation for cognitive radio. Information that needs to be passed between different components of a dynamic spectrum management (DSM) system for dynamic bandwidth allocation along with the corresponding interfaces is identified. Methods and associated metrics for measuring network performance, evaluating channel sensing results and handling various bandwidth allocation scenarios are presented. Also provided is an admission control mechanism for quality of service support. Alternate channel monitoring maybe performed in the background so that when a new channel is needed, an alternate channel may be immediately allocated and service disruption to the DSM system is reduced. A channel may be dynamically assigned as the primary channel in multiple channel scenarios to support tasks such as transmission of acknowledgment frames. Hybrid mode devices that may access a television white space (TVWS) database and perform spectrum sensing are also described.
Abstract:
A wireless transmit/receive unit (WTRU) that may receive an asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) signal is disclosed. The ACO-OFDM signal may include an ACO-OFDM symbol and the ACO-OFDM signal may be generated with or without a pilot or training data. Where the ACO-OFDM signal may not include a pilot or training data, the WTRU may determine a correlation minimum between a first part of N samples of the ACO-OFDM symbol and a second part of N samples of the ACO- OFDM symbol. The correlation minimum may indicate an estimated boundary of the ACO- OFDM symbol which may provide the WTRU with timing synchronization information. Where the ACO-OFDM signal may include one or more ACO-OFDM pilot symbols on one or more pilot subcarriers, the WTRU may interpret an amount of training data included in the one or more ACO-OFDM pilot symbols that may provide information for channel estimation.
Abstract:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto acces point and a BWM server, a BWM server may need deep packet inspection capabilities.