Abstract:
An optical system includes an optical film curved about a first axis and a light control film curved about the first axis and substantially coextensive with the optical film. The optical film includes a first layer including a microstructured first major surface where the microstructured first major surface defines a linear Fresnel lens including a plurality of Fresnel elements extending along the first axis. The first major surface of the optical film faces the light control film. The light control film includes a plurality of spaced apart optically absorptive regions extending along the first axis and along a direction substantially normal to a major surface of the light control film. At least one of the optical film or at least one layer disposed between the optical film and the light control film includes at least one reflection mitigation element.
Abstract:
An optical system includes a light source, an optical film curved about a first axis, and a light control film curved about the first axis and disposed between the light source and the optical film. The optical film includes a microstructured first major surface and an opposing second major surface. The microstructured first major surface defines a linear Fresnel lens including a plurality of Fresnel elements extending longitudinally along the first axis. The first major surface of the optical film faces the light control film. The light control film includes a plurality of alternating optically transmissive and optically absorptive regions extending longitudinally along the first axis such that in a cross-section orthogonal to the first axis, for at least a majority of the optically transmissive regions, a centerline between adjacent optically absorptive regions is substantially normal to a major surface of the light control film.
Abstract:
A unitary lightguide including a first lightguide section extending along a first direction and a second lightguide section extending along a second direction is described. The second lightguide section includes a plurality of light extractors for extracting light that would otherwise propagate within and along the second lightguide section. The unitary lightguide includes a boundary region disposed between and joining the first and second lightguide sections and including a plurality of spaced apart light redirecting features. Each light redirecting feature includes a first portion extending substantially parallel to the first direction, and a second portion extending from proximate the first end of the first portion toward the second lightguide section and making an angle with the first portion in a range from about 10 degrees to about 70 degrees.
Abstract:
Various embodiments of lightguides and illumination systems that include lightguides are disclosed. In one or more embodiments, a lightguide can include first and second light extractors (330,340) that extract light that would otherwise be confined and propagate within the lightguide along the length of the lightguide primarily by total internal reflection. The first and second light extractors can form respective first and second patterns along a length of the lightguide. Light extracted by the first light extractors can exit the lightguide primarily along a first direction (306). Light extracted by the second light extractors can exit the lightguide primarily along a second direction (308) different from the first direction. A brightness of the total light extracted by the first light extractors can be larger than a brightness of the total light extracted by the second light extractors.
Abstract:
A backlight (10) includes a front and back reflectors (12,14) forming a light recycling cavity (16) and one or more light source members (24a, 24b, 24c) disposed to emit light into the light recycling cavity. The front reflector (12) being partially reflective to provide an output illumination area. The front reflector (12) has a blue sloped transmission spectra, at normal incidence with a range among bin values from 15% to 100%.
Abstract:
An optical diffuser layer includes a binder, a plurality of metal oxide particles dispersed in the binder, and a plurality of interconnected voids. A plurality of haze generating particles are dispersed in the binder. The optical diffuser layer has an effective refractive index of 1.3 or less.
Abstract:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight also includes a semi-specular element, and a light extraction element disposed within the hollow cavity. The light extraction element has a gradient specularity. The backlight also includes one or more light sources disposed to inject light into the hollow light recycling cavity, where the one or more light sources are configured to inject light over a limited angular range.
Abstract:
A backlight that includes a front reflector (120) and a back reflector (130) that form a hollow light recycling cavity including an output surface (104) is disclosed. At least a portion of the back reflector is non-parallel to the front reflector. The backlight also includes at least one semi-specular element disposed within the hollow light recycling cavity, and one or more light sources (140) disposed to emit light into the hollow light recycling cavity, where the one or more light sources are configured to emit light into the hollow light recycling cavity over a limited angular range.
Abstract:
Devices (100, 200, 300) are provided, including an article (110, 210, 310) shaped to form a recycling light cavity (116, 216, 316), a UVC light source (120, 220, 320), and an electronic display (130, 230, 330). The recycling light cavity (116, 216, 316) is disposed on at least a portion of the electronic display (130, 230, 330). The article (110, 210, 310) includes an ultraviolet mirror (5) containing at least a plurality of alternating first and second optical layers (12A, 13A, 12B, 13B, 12N, 13N). The ultraviolet mirror (5) reflects ultraviolet light directed towards the ultraviolet mirror (5) from the UVC light source (120, 220, 320) in a wavelength range from 190 nm to 290 nm and transmits visible light in a wavelength range from 380 nm to 800 nm. Systems (100, 200, 300) are also provided including the article (110, 210, 310), a portable electronic device, and a UVC light source (120, 220, 320). Methods of disinfecting are further provided, including obtaining a device or system (100, 200, 300), directing UVC light at the ultraviolet mirror (5), and exposing the ultraviolet mirror (54) to ultraviolet light in a wavelength range from 190 nm to 290 nm.
Abstract:
A device including a housing that is substantially impermeable to ultraviolet radiation having a wavelength of from 280 nm to 400 nm, and at least one window defined in the housing, the window including a UV-C radiation band-pass mirror film having a multiplicity of alternating first and second optical layers collectively transmitting UV-C radiation at a wavelength from at least 100 nm to less than 280 nm and not transmitting UV-A and UV-B radiation at a wavelength of from 280 nm to 400 nm, and an ultraviolet radiation source positioned within the housing, the ultraviolet radiation source being capable of emitting ultraviolet radiation at one or more wavelength from 100 nm to 400 nm. The device optionally further includes an ultraviolet mirror film positioned within the housing so as to reflect ultraviolet radiation emitted by the ultraviolet radiation source. A method of disinfecting a material is also disclosed.