Abstract:
This invention relates to processes for the production of reaction mixtures, which have oxidation inhibition characteristics, using sterically hindered 4-alkoxymethyl-2,6-dihydrocarbylphenol and aromatic amines or heterocyclic compounds.
Abstract:
Described are multi-ring antioxidant products comprising at least one sulfur- bridged aromatic hydrocarbon compound substituted on at least one of its aromatic rings by at least one sterically hindered 3,5-dihydrocarbyl-4-hydroxybenzyl moiety. Such products have the formula : R-Sn-R[-S-R]m wherein each R is, independently, an aromatic hydrocarbon group having 6-12 carbon atoms, wherein m is 0-20, wherein n is 1-6 when m is 0, and when n is 1, m is 1-20; and wherein at least one of R, R1, and R2 is substituted by at least one such sterically hindered moiety. The preparation of such products and their use as antioxidants in compositions normally susceptible to oxidative degradation in oxygen or air, e.g., liquid fuel and lubricants, are also described.
Abstract:
In producing (±)-2-(6-methoxy-2-naphthyl)propionic acid or precursor thereof from 2-bromo-6-methoxynaphthalene, use is made of 2-bromo-6-methoxynaphthalene formed by (a) methylating 6-bromo-2-naphthol with methyl chloride in a solvent comprising one or more compounds, RZ, where R is a hydrogen atom or an alkyl group, and Z is -OH or -CN provided that if Z is -CN, R is alkyl, and in the presence of a strong base; and (b) recovering and purifying 2-bromo-6-methoxynaphthalene so formed. Preferably, the 6-bromo-2-naphthol is formed by (1) reacting 1,6-dibromo-2-naphthol with hydrogen, in a solvent comprising (a) organic halide in which the halogen has an atomic number of 35 or less or (b) a mixture of water and such organic halide, and in the presence of catalytically effective amounts of (i) a tungsten carbide-based catalyst, and (ii) phase transfer catalyst; and (2) separating 6-bromo-2-naphthol from the organic halide solvent so that the 6-bromo-2-naphthol is substantially free of halogen-containing impurities before use in the above methylation reaction. This technology makes possible reductions in quantities of co-products formed, eliminates need for use of excess iron and/or dimethyl sulfate as reaction components, and makes possible improvements in plant operating efficiency. Precursors of (±)-2-(6-methoxy-2-naphthyl)propionic acid formed from such 2-bromo-6-methoxynaphthalene are Grignard reagent of 2-bromo-6-methoxynaphthalene, bis(6-methoxy-2-naphthyl)zinc, 6-methoxy-2-naphthylzinc halide, 6-methoxy-2-naphthyllithium, 6-methoxy-2-naphthylcopper (I), bis(6-methoxy-2-naphthyl)cadmium, 6-methoxy-2-naphthylcadmium halide, and 6-methoxy-2-vinylnaphthalene.
Abstract:
This invention relates to novel macromolecular compositions having oxidation inhibition characteristics that are exhibited when added to organic material normally susceptible to oxidative degradation in the presence of air or oxygen, such as petroleum products, synthetic polymers, and elastomeric substances.
Abstract:
This invention relates to novel macromolecular amine-phenolic compositions having oxidation inhibition characteristics that are exhibited when added to organic material normally susceptible to oxidative degradation in the presence of air or oxygen, such as petroleum products, synthetic polymers, and elastomeric substances.