Abstract:
Fluoropolymer-based coatings with enhanced gloss are obtained by using a semi-crystalline fluorinated polymer having a very small particle size, in combination with a nucleating agent (such as PTFE) and, optionally, an acrylic polymer.
Abstract:
The invention relates to an aqueous fluoropolymer coating composition for direct application to glass without the need for pre-treatment of the glass surface. The coating composition can also be used with other non-porous and porous substrates. The fluoropolymer coating contains a hydroxyl-functional fluoropolymer, and polyisocyanates. Preferably the coating composition also contains a water-dispersible hydroxyl functional polyurethane. The coating composition may exist as a 1-pack or a multi-pack coating system. The coating has excellent wet adhesion to glass, good weathering, chalking resistance, chemical resistance, and dirt pickup resistance.
Abstract:
Hollow fiber membranes having improved toughness and durability are prepared using a vinylidene fluoride polymer-containing component, such as Kynaro resins, having relatively low crystallinity. One aspect of the invention provides a membrane in the form of a fiber, wherein i) the fiber has a porous wall of a polymeric component enclosing a central hollow space extending the length of the fiber, ii) the polymeric component has a crystallinity as determined by wide angle x-ray diffraction of less than about 35%, iii) the polymeric component is comprised of at least one homopolymer or copolymer of vinylidene fluoride and iv) the membrane has an energy to break of at least about 0.5 J per square mm of membrane cross section.
Abstract:
The invention relates to a one-step fluoropolymer, especially polyvinylidene fluoride (PVDF), coating for use on metals, especially use on metal fuel line and brake tubes, etc, to provide a protective barrier with superior chemical resistance, impact resistance and heat resistance as well as good flexibility. The coating composition contains, on a resin solids basis, 75-94 percent polyvinylidene fluoride resin, 5-20 percent acrylic resin, and 1-15 percent polyepoxide polyepoxide resin. The coating has excellent adhesion on metal substrates, particularly on non-pretreated galvanized steel, without the need for a primer coating.
Abstract:
A nanodiamond coating for use on a solar cell, the coating including a nanodiamond material suspended in a liquid, wherein the nanodiamond material has a size range from about 1 nm to about 10 nm. Methods for improving the efficiency of a solar cell are provided, including, mixing a nanodiamond material with a liquid polymer or non-polymer solvent to form a nanodiamond-polymer suspension, forming a coating of the suspension on a top surface of a solar cell, and drying the coating such that a dried nanodiamond-polymer layer remains bonded to the solar cell. Useful nanodiamond coating compositions may include a nanodiamond material, a fluoropolymer, a liquid solvent for the fluoropolymer and at least one additive selected from the group consisting of dispersing agents, adhesion promoters, and coupling agents. The fluoropolymer may also be used in the form of an aqueous dispersion.
Abstract:
The invention relates to an process for coating a glass substrate with an environmentally friendly aqueous, fluoropolymer coating composition. The process involves applying a polyurethane primer to the glass substrate, and partially, but not completely crosslinking this primer coating. An aqueous hydroxyl-functional fluoropolymer coating is then applied to the partially cross-linked primer coating, and the coating allowed to fully cure. The invention also relates to the intertwined multilayer primer/fluoropolymer coating on the glass substrate. The final coating has excellent wet adhesion to glass, good weathering, durability, chalking resistance, chemical resistance, and dirt pickup resistance.
Abstract:
The invention relates to a heat-stabilized fluoropolymer composition that resists discoloration, especially in extended heat applications. The composition includes at least one phosphoaryl compound having phosphorous in a P +3 or P +5 oxidation state. This additive reduces the yellowing effect that can occur during extended heat exposure, especially of polyvinylidene fluoride and polyvinyl fluoride polymers and copolymers.
Abstract:
The invention relates to a separator for non-aqueous-type electrochemical device that has been coated with an aqueous fluoropolymer coating. The fluoropolymer is preferably polyvinylidene fluoride (PVDF), and more preferably a copolymer of polyvinylidene fluoride. The fluoropolymer coating provides a porous coating on porous substrate separator used in non-aqueous-type electrochemical devices, such as batteries and electric double layer capacitors. The fluoropolymer coating improves the thermal resistance and mechanical integrity, and lowers the interfacial electrical impedance of the porous separator. The fluoropolymer composition optionally contains powdery particles that are held together on the separator by the fluoropolymer binder. In one embodiment, the starting fluoropolymer dispersion is free of fluorinated surfactant. In another embodiment, one or more fugitive adhesion promoters are added.
Abstract:
This invention relates to a waterborne fluoropolymer composition useful for the fabrication of Li-Ion-Battery (LIB) electrodes. The fluoropolymer composition contains an organic carbonate compound, which is more environmentally friendly than other fugitive adhesion promoters currently used in waterborne fluoropolymer binders. An especially useful organic carbonate compound is ethylene carbonate (EC) and vinylene carbonate (VC), which are solids at room temperature, and other carbonates which are liquid at room temperature such as propylene carbonate, methyl carbonate and ethyl carbonate. The composition of the invention is low cost, environmentally friendly, safer, and has enhanced performance compared to current compositions.
Abstract:
The invention relates to a novel film, membrane or powder media made from fluoropolymers, especially PVDF-based and ETFE-based polymers, which are suitable for separating gases, especially carbon dioxide, from a gas mixture. The novel film has good selectivity, high permeance, good mechanical properties, and exhibits a high resistance to oxidant and acid attack. The separation film is especially useful in harsh and corrosive environments.