Abstract:
Disclosed herein are methods for generating a massive number of chemically ligateable probes for multiplexed Fluorescence In Situ Hybridization (FISH) using a hybrid- primer. Also, the disclosure sets forth methods, in addition to using the same, and other solutions to problems in the relevant field.
Abstract:
The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. In some embodiments, through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci.
Abstract:
Disclosed herein are methods for generating an ratiometric symbol for sequential hybridization barcoding for multiplexed Fluorescence In Situ Hybridization (FISH). Also, the disclosure sets forth methods, in addition to using the same, and other solutions to problems in the relevant field.
Abstract:
The present invention, among other things, provides technologies for detecting and/or quantifying nucleic acids in cells, tissues, organs or organisms. Through sequential barcoding, the present invention provides methods for high-throughput profiling of a large number of targets, such as transcripts and/or DNA loci. In some embodiments, nucleic acid probes include a signal moiety connected with a binding sequence via a cleavable linker.
Abstract:
Disclosed herein include systems, methods, compositions, and kits for in situ readout of barcodes, such as DNA barcodes. Barcode constructs containing a promoter (e.g., a phage promoter) that is inactive in live cells can be integrated in the genomes of cells. Cells can be fixed, and phage RNA polymerase can be used for transcription of the barcode to RNA transcripts. The RNA transcripts can be detected using, for example, fluorescent imaging and used to determine barcode sequences.
Abstract:
Disclosed herein are methods and systems for analyzing visual data from multiple rounds of hybridization interactions where the same molecular target is detected by probes with different detectable labels. In particular, disclosed herein are methods and systems for analyzing sequential hybridization images for molecular profiling, where the images are obtained using multiplex fluorescence in situ hybridization (FISH).
Abstract:
Methods and systems are provided for creating molecular barcodes or indicia for cellular constituents within single cells and for resolving such barcodes or indicia with super resolution technologies such as super resolution microscopy. By this approach, numerous molecular species that can be measured simultaneously in single cells. It has been demonstrated that multiple mRNA transcripts can be labeled with a spatially ordered sequence of fluorophores, and that barcode can be resolved. The methods and systems can be used for genome-wide transcriptional profiling in individual cells by super-resolution barcoding and suggest a general strategy to bring large-scale-omics approach into single cells.
Abstract:
Disclosed herein are methods for generating a massive number of chemically ligateable probes for multiplexed Fluorescence In Situ Hybridization (FISH) using a hybrid- primer. Also, the disclosure sets forth methods, in addition to using the same, and other solutions to problems in the relevant field.
Abstract:
Disclosed herein is a composition for linked amplification tethered with exponential radiance for signal amplification. Also disclosed herein, is a kit for linked amplification tethered with exponential radiance for signal amplification. Also disclosed herein, is a method linked amplification tethered with exponential radiance for signal amplification.
Abstract:
This disclosure herein sets forth embodiments to provide a serological test to detect target analytes that can scale to up to 10,000 or more samples in a single run. This disclosure herein sets forth methods to allow for unique barcoding by using a multi-level barcode scheme that is modular and enables easy detection of multiple analytes, e.g. from SARS-COVID-2, in samples.