Abstract:
Embodiments of apparatus, transport refrigeration units, and methods for operating the same can control cooling capacity for a refrigerant vapor compression system. Embodiments can provide use discharge pressure control for modulating cooling capacity for a refrigerant vapor compression system. In one embodiment, discharge pressure control can reduce the cooling capacity without increasing the compressor pressure ratio or discharge temperature. In one embodiment, discharge pressure control can reduce the cooling capacity independently of system superheat. In one embodiment, discharge pressure control can control a compressor discharge temperature; for example, to remain below a threshold temperature.
Abstract:
An activation indicator for a refrigeration system pressure relief valve is presented. In one embodiment, the indicator comprises a covering that covers an outlet passage of the pressure relief valve. The covering is at least partially displaceable by refrigerant as it exits the refrigeration system through the pressure relief valve. In another embodiment, sensors outputting a signal transmit an altered signal when the relief device releases refrigerant. A notification device is activated to indicate that the pressure relief device has activated.
Abstract:
A refrigeration unit for use with a container includes a compressor, a condenser, an expansion device and an evaporator configured to circulate a refrigerant; a condenser section housing the condenser; an evaporator section housing the evaporator; a removable access panel mounted to the evaporator section, the removable access panel serving as a mounting location for at least one component of an atmosphere control system.
Abstract:
A method of operating a refrigeration system is provided. The method includes activating an evaporator heater (306), monitoring a pressure differential within the refrigeration system (308), when the pressure differential reaches a predetermined value (310), deactivating the evaporator heater (312), and activating one or more evaporator fans (314), after deactivating the evaporator heater, to cause a thermostatic expansion valve to open.
Abstract:
A refrigeration system (10) includes a compressor (20) having a first stage (20a) and a second stage (20b); a heat rejecting heat exchanger (40) having a fan (44) drawing ambient fluid over the heat rejecting heat exchanger, the heat rejecting heat exchanger including an inter- cooler (43) and a gas cooler(41), the intercooler coupled to an outlet of the first stage and the gas cooler coupled to an outlet of the second stage;, an unload valve (93) coupled to an outlet of the intercooler and a suction port of the first stage; a flash tank (70) coupled to an outlet of the gas cooler; a primary expansion device (55) coupled to an outlet of the flash tank; a heat absorbing heat exchanger (50) coupled to an outlet of the primary expansion device, an outlet of the heat absorbing heat exchanger coupled to the suction port of the first stage; and a controller (100) for executing a startup process.
Abstract:
Transport refrigeration systems such as container refrigeration systems can operate on 3-phase power supplied by an external power supply such as in storage when powered by a generator system. If the refrigeration system is equipped with 3-phase motors, it is necessary to provide a phase detection and adjustment capability to the refrigeration system if the rotational direction of these motors is relevant to the operation of the refrigeration system. Embodiments according to the application provide systems and method for phase detection in a refrigeration system.
Abstract:
Methods and systems for power management are provided. Aspects include receiving, by a controller (302), load data associated with two or more refrigeration systems, wherein the two or more refrigeration systems comprise at least a first refrigeration system (306a, 308a) and a second refrigeration system (306b, 308b), determining, by the controller (302), an available power capacity for the first refrigeration system (306a, 308a) and the second refrigeration system (306b, 308b), operating, by the controller (302), the first refrigeration system (306a, 308a) and the second refrigeration system (306b, 308b) in a plurality of modes based at least in part on the load data and the available power capacity, wherein the plurality of modes comprise an unloaded mode and a plurality of loaded modes.
Abstract:
Systems and methods for testing circuit operations are provided. Aspects include a circuit comprising a power source, a switching element, and a load. A sensing element is arranged between the switching element and the load and the sensing element is communicatively coupled to a microcontroller, wherein the microcontroller is configured to perform a diagnostic operation for the circuit comprising obtaining, from the sensing element, first sensor data associated with the load responsive to operating the switching element, wherein the first sensor data comprises electrical values associated with the load, obtaining, from the sensing element, second sensor data associated with an output of the switching element, wherein the second sensor data comprises electrical values associated with the output of the switching element, and analyzing the first sensor data and the second sensor data to determine a fault condition for the circuit.
Abstract:
A refrigeration system includes a compressor having a first stage (20a) and a second stage (20b); a motor (22) driving the compressor; a heat rejecting heat exchanger having a fan (44) drawing ambient fluid over the heat rejecting heat exchanger, the heat rejecting heat exchanger including an intercooler (43) and a gas cooler, the inter- cooler coupled to an outlet of the first stage and the gas cooler (41) coupled to an outlet of the second stage; a flash tank (70) coupled to an outlet of the gas cooler; a primary expansion device (55) cou¬ pled to an outlet of the flash tank; a heat absorbing heat exchanger (50) coupled to an outlet of the primary expansion device, an outlet of the heat absorbing heat exchanger coupled to the suction port of the first stage; and a controller (100) for implementing a pulldown mode, a control mode and a staging logic mode.
Abstract:
Embodiments of apparatus, transport refrigeration units, and methods for operating the same can control refrigerant compression device restart for a refrigerant vapor compression system. Embodiments can provide control for transitioning a refrigerant vapor compression system to an economized mode.