Abstract:
Embodiments of a Nickel-rich (Ni-rich) Schottky contact for a semiconductor device and a method of fabrication thereof are disclosed. Preferably, the semiconductor device is a radio frequency or power device such as, for example, a High Electron Mobility Transistor (HEMT), a Schottky diode, a Metal Semiconductor Field Effect Transistor (MESFET), or the like. In one embodiment, the semiconductor device includes a semiconductor body and a Ni-rich Schottky contact on a surface of the semiconductor body. The Ni-rich Schottky contact includes a multilayer Ni-rich contact metal stack. The semiconductor body is preferably formed in a Group III nitride material system (e.g., includes one or more Gallium Nitride (GaN) and/or Aluminum Gallium Nitride (AlGaN) layers). Because the Schottky contact is Ni-rich, leakage through the Schottky contact is substantially reduced.
Abstract:
An integrated circuit device includes a radio frequency transistor amplifier die having a first surface, a second surface, a semiconductor layer structure that is between the first and second surfaces and includes a plurality of transistor cells adjacent the first surface, and terminals coupled to the transistor cells. At least one passive electronic component is provided on the second surface of the die and is electrically connected to at least one of the terminals, for example, by at least one conductive via. One or more conductive pillar structures may protrude from the first surface of the die to provide electrical connections to one or more of the terminals.
Abstract:
Embodiments of a multi-layer environmental barrier for a semiconductor device and methods of manufacturing the same are disclosed. In one embodiment, a semiconductor device is formed on a semiconductor die. The semiconductor die includes a semiconductor body and a passivation structure on the semiconductor body. A multi-level environmental barrier is provided on the passivation structure. The multi-layer environmental barrier is a low-defect multi-layer dielectric film that hermetically seals the semiconductor device from the environment. In one embodiment, the multi-layer environmental barrier has a defect density of less than 10 defects per square centimeter (cm 2 ). By having a low defect density, the multi-layer environmental barrier serves as a robust barrier to the environment.
Abstract:
A semiconductor device, comprising: a substrate (50) with an active area (44) and a gate control contact area (52); a source bond pad (46) on at least a portion of the active area (44); a gate bond pad (48) over the gate control contact area (52) and laterally extending over a portion of the source bond pad (46); and dielectric layer (60) between the portion of the source bond pad (46) and the gate control bond pad (48). The arrangement of the gate bond pad (48) partiall on top of the source bond pad (46) enables the active area (44) to extend below the gate bond pad (48), which in turn decreases a size of the power semiconductor device for a particular rated current or, conversely, increases a size of the active area (44) and thus a rated current for a particular semiconductor die size. Methods for manufacturing said semiconductor device are also provided.
Abstract:
A semiconductor die includes a substrate, a first passivation layer over the substrate, and a second passivation layer over the first passivation layer and the substrate. The substrate has boundaries defined by a substrate termination edge. The first passivation layer is over the substrate such that it terminates at a first passivation termination edge that is inset from the substrate termination edge by a first distance. The second passivation layer is over the first passivation layer and the substrate such that it terminates at a second passivation termination edge that is inset from the substrate termination edge by a second distance. The second distance is less than the first distance such that the second passivation layer overlaps the first passivation layer.