Abstract:
Unique apparatuses, methods, and systems including engine-out emissions controls are disclosed. One embodiment is a system including an internal combustion engine system including at least one fueling actuator and at least one air handling actuator and an electronic controller. The electronic structure may be structured to determine initial values for a plurality of combustion references, determine a plurality of target emissions values or ranges based upon the plurality of combustion references, determine errors between the emissions target values or ranges and sensed emissions information, determine correction factors and weighting factors for the combustion references, the weighting factors being based at least in part upon the errors between the between the emissions target values or ranges and sensed emissions information.
Abstract:
An example method includes interpreting an NH3 composition value at a position upstream of a selective reduction catalyst (SCR) element fluidly disposed in the exhaust conduit of an engine, interpreting a NOx composition value at a position downstream of the SCR element, and determining an NH 3 sensor rationality threshold in response to the upstream NH 3 composition value. The method further includes determining an NH 3 sensor health value as indicating a sensor failure in response to the downstream NOx composition value exceeding the NH 3 sensor rationality threshold.
Abstract:
A system includes an internal combustion engine, an exhaust conduit fluidly coupled to the internal combustion engine and an SCR catalyst, and a reductant doser operationally coupled to the exhaust conduit at a position upstream of the SCR catalyst. The reductant doser is responsive to a reductant doser command. The system includes a controller having a number of modules functionally structured to execute operations to compensate for transient operation of the system. An NH3 target module interprets a reductant amount target that is a target amount of reductant in the exhaust conduit at a position upstream of the SCR catalyst. A transient adjustment module detects a transient event in the SCR catalyst and provides an adjusted reductant amount target in response to the transient event and the reductant amount target. A dosing control module provides the reductant doser command in response to the adjusted reductant amount target.
Abstract:
A system includes an engine, an exhaust conduit for the engine, a first SCR catalyst fluidly coupled to the exhaust conduit, and a second SCR catalyst fluidly coupled to the exhaust conduit at a position downstream of the first SCR catalyst. The system further includes an ammonia sensor positioned between the first and second SCR catalysts. A reductant doser is positioned upstream of the first SCR catalyst. The system includes a controller that determines an amount of NH 3 present from the NH 3 sensor, and computes an actuator response function from at least one operating condition of the first SCR catalyst. The actuator response function includes a reductant injector response as a function of the amount of NH 3 , and the actuator response function includes a response discontinuity. The controller further determines a reductant injection amount from the amount of NH 3 and the actuator response function, and provides a reductant injector command.
Abstract:
A method includes determining whether selective catalytic reduction (SCR) test conditions are present, and in response to the SCR test conditions being present, operating an SCR aftertreatment system at a number of reduced ammonia to NOx ratio (ANR) operating points. The method further includes determining a deNO x efficiency value corresponding to each of the ANR operating points. The method further includes determining a reductant correction value in response to the deNO x efficiency values corresponding to each of the ANR operating points, and providing a reductant injection command in response to the reductant correction value.
Abstract:
A method for controlling charge flow in an internal combustion engine includes operating an engine having a VGT. The method includes determining a target and current charge flow and EGR flow. The method further includes determining an error term for the charge flow and the EGR flow, and determining an exhaust pressure feedback command in response to the error terms. The exhaust pressure feedback command is combined with an exhaust pressure feedforward command, and the VGT is controlled in response to the exhaust pressure feedback command. The method additionally includes determining the exhaust pressure feedback command in response to a current EGR valve position. The method further includes controlling an EGR flow rate with the EGR valve at relatively closed EGR valve positions, and controlling the EGR flow rate with exhaust pressure at relatively open EGR valve positions.
Abstract:
An exemplary method includes determining an NH3 reference target in an exhaust conduit between a first SCR catalyst and a second SCR catalyst. The method includes determining a present amount of NH3 in the exhaust conduit between the first SCR catalyst and the second SCR catalyst, and determining an NH3 error term in response to the NH3 reference target and the present amount of NH3. The method further includes determining an amount of NOx downstream of the second SCR catalyst, and adjusting one of the NH3 reference target and a reductant doser command in response to the amount of NOx downstream of the second SCR catalyst. The method further includes providing a reductant doser command in response to the NH3 error term.
Abstract:
A method is disclosed for adjusting a target EGR mass flow in response to a current charge flow and target EGR fraction. The method includes interpreting an air-fuel ratio and a target air-fuel ratio. The method further includes interpreting a charge flow and a target EGR fraction. The method further includes determining an adjusted target EGR mass flow based on the air-fuel ratio, the target air-fuel ratio, the charge flow, and the target EGR fraction. The method further includes controlling an actuator based on the adjusted target EGR mass flow.
Abstract:
A system and method are provided for estimating an instantaneous EGR mass flow rate corresponding to a flow rate of exhaust gas through an exhaust gas recirculation (EGR) conduit fluidly coupled between an exhaust manifold and an intake manifold of an internal combustion engine with an EGR cooler positioned inline with the EGR conduit. An operating position of the engine is monitored, and the instantaneous EGR mass flow rate is estimated at each of a plurality of fixed increments of the engine position based on EGR cooler outlet temperature, intake manifold pressure and a pressure differential across a flow restriction disposed inline with the exhaust gas conduit between the EGR cooler and the intake manifold.