Abstract:
A process to form a crosslinked composition comprising thermally treating a composition at a temperature ≥ 25°C, in the presence of moisture, and wherein the composition comprises the following components: a) an olefin/silane interpolymer, b) a cure catalyst selected from the following: i) a metal alkoxide, ii) a metal carboxylate, iii) a metal sulfonate, iv) an aryl sulfonic acid, v) a tris-aryl borane, vi) any combination of two or more from i)-v). Also, a composition comprising the following components a and b, as described above. A process to form an olefin/alkoxysilane interpolymer, and the corresponding composition, said process comprising thermally treating a composition comprising the following components: a) an olefin/silane interpolymer, b) an alcohol, and c) a Lewis acid.
Abstract:
The present disclosure is directed to a silicon-terminated telechelic polyolefin composition comprising a compound of formula (I). Embodiments related to a process for preparing the silicon-terminated telechelic polyolefin composition comprising a compound of formula (I), the process comprising combining starting materials comprising (A) a silicon-terminated organo-metal compound and (B) a silicon-based functionalization agent, thereby obtaining a product comprising the silicon-terminated telechelic polyolefin composition. In further embodiments, the starting materials of the process may further comprise (C) a nitrogen containing heterocycle. In further embodiments, the starting materials of the process may further comprise (D) a solvent.
Abstract:
An interpolymer, which comprises at least one siloxane group, and prepared by polymerizing a mixture comprising one or more "addition polymerizable monomers" and at least one siloxane monomer, in the presence of a catalyst system comprising a Group 3-10 metal complex, and the siloxane monomer is selected from the following Formula 1: Aa-Si(Bb)(Cc)(Hh0)-O-(Si(Dd)(Ee)(Hh1)-O)x-Si(Ff)(Gg)(Hh2), described herein. An ethylene/siloxane interpolymer comprising at least one chemical unit of Structure 1, or at least one chemical unit of Structure 2, each described herein. A process to form an interpolymer, which comprises, in polymerized form, at least one siloxane monomer, or at least one silane monomer without a siloxane linkage, said process comprising polymerizing a mixture comprising one or more "addition polymerizable monomers" and at least one monomer of Formula 4, described herein, in the presence of a catalyst system comprising a metal complex from Formula A or Formula B, each described herein.
Abstract:
The present disclosure relates to a catalyst system for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization procatalyst, (B) a second olefin polymerization procatalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by procatalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer, comprising one or more triaryl aminium radical cations having the structure (S1).
Abstract:
A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer having M n at least 4,000 and comprising polymerized units of a compound of formula NAr 1 Ar 2 Ar 3 , wherein Ar 1 , Ar 2 and Ar 3 independently are C 6 -C 50 aromatic substituents and at least one of Ar 1 , Ar 2 and Ar 3 contains a vinyl group attached to an aromatic ring; provided that said compound contains no arylmethoxy linkages; (b) an acid catalyst which is is an organic Bronsted acid with pKa≤4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF 3 , (ii) BF 4 - , (iii) PF 6 - , (iv) SbF 6 - , (v) AsF 6 - or (vi) ClO 4 - ; or a thermal acid generator.
Abstract:
A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer resin having M w at least 3,000 and having arylmethoxy linkages; (b) an acid catalyst which is an organic Bronsted acid with pKa≤4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF 3 , (ii) BF 4 - , (iii) PF 6 - , (iv) SbF 6 - , (v) AsF 6 - or (vi) ClO 4 - ; or a thermal acid generator.
Abstract:
The invention provides compositions comprising copper(I) pyrazolate dimer compounds for use in OLEDs applications. The inventive compositions can be used to generate visible light colors or a color blend in electronic devices.