Abstract:
Disclosed herein are hydrophilic microfibers and hydrophilic nanofibers, and methods for making these hydrophilic microfibers and nanofibers. The hydrophilic microfibers and/or nanofibers provide hydrophilic and/or self-cleaning properties when incorporated in paints and coatings. These hydrophilic microfibers and/or hydrophilic nanofibers may include polymers. In some embodiments, the hydrophilic microfibers and/or hydrophilic nanofibers may be surface activated polymers. Surface activation may involve oxidation of the polymers, which may result in formation of hydrophilic moieties on the surface of the polymers. In some embodiments, the hydrophilic microfibers and/or hydrophilic nanofibers may include hydrophilic groups on the surface and/or at one or both ends of the microfiber or the nanofiber.
Abstract:
Technologies are generally described for a gas filtration device including an array of parallel carbon nanotubes. The carbon nanotubes may extend between first and second substrates, and the ends of the carbon nanotubes may be embedded in the substrates and cut to expose openings at each end of the carbon nanotubes. The carbon nanotubes may be composed from a graphene membrane which may be perforated with a plurality of discrete pores of a selected size for enabling one or more molecules to pass through the pores. A fluid mixture including two or more molecules for filtering may be directed through the first openings of the array of nanotubes, and the fluid mixture may be filtered by enabling smaller molecules to pass through the discrete pores of the graphene membrane walls of the carbon nanotubes to produce in a filtrate fraction including the smaller molecules and a retentate fraction including larger molecules.
Abstract:
Coating compositions with light absorbing chromophores and method of making the compositions are disclosed. The compositions include a photocatalytic pigment attached to at least one light absorber covalently or non-covalently. The light absorber provides protection to the coating polymer from UV-induced photocatalytic activity of the pigments.
Abstract:
Disclosed are methods and apparatuses for identifying and sorting cells based on the cells' response to an external stimulus. Cellular adherence to liquid crystals with tunable wettability is measured before and after an induced change in the liquid crystal wettability. The cell-based liquid crystal reorientation can be measured and used for monitoring and sorting of cells in a label-free manner, and thus provides a positive method for selecting cells, such as stem cells, for use in tissue engineering applications.
Abstract:
Methods for in-line purification of surfactant from a first fluid, such as a microemulsion are disclosed. Magnetic particles coated with surfactant molecules may be used to bind surfactants from a fluid. A magnetic field may be used to separate the bound materials from the fluid.
Abstract:
Techniques described herein are generally related to graphene membranes having gas- permeable substrates. Various example substrates may include a gas-permeable substrate with a convoluted surface and a graphene layer on the gas-permeable substrate. The membranes may also include nanopores formed on the graphene layer. The membranes may exhibit improved permeability properties. Methods and systems configured to make and use the membranes are also disclosed.
Abstract:
Thermostatic materials and methods for making and using the materials are disclosed. The thermostatic materials have phase change materials (PCMs) incorporated into a composite with thermoreversible gels (TRGs) that undergo gelation prior to the melt temperature of the PCMs so that at temperatures at which the PCMs become liquid, the liquid PCM is retained by the gel, and at temperatures at which the gel becomes liquid, the liquid form of the gel is retained by a solid form of the PCM.
Abstract:
Fluorinated siloxane compositions, and methods of making and using the fluorinated siloxanes are disclosed. The polymers described herein may exhibit self-healing properties, a low dielectric constant, and a low refractive index. In some embodiments, a method of making a siloxane compound may involve contacting a silicon metal with a fluorinated compound to form a dichlorosilane compound, hydrolyzing the dichlorosilane compound to form a fluorinated tetrasiloxane compound, and contacting the fluorinated tetrasiloxane compound with a metal catalyst to form a fluorinated cyclic siloxane (D4) compound.
Abstract:
Hydrophilic coating compositions and methods to make and use the compositions are disclosed. The compositions include a polymer comprising guanidinyl, amidinyl, hydroxyalkylaminoalkyl, or dihydroxyalkylamino alkyl functional groups. The functional groups react with atmospheric CO 2 to form ionic or polyelectrolytic groups, thus transforming a coated surface from hydrophobic to hydrophilic upon exposure to CO 2 .
Abstract:
Coating compositions that provide hydrophilic and anti-freeze properties are disclosed. The coatings include at least one hydrophilic agent bound to one or more coating components, such as a rheology modifier, a surfactant, a coalescing agent, and a pigment. The hydrophilic agents are attached to the coating components covalently.