Abstract:
A centrifugal separator for removing particles from a fluid stream includes an angular velocity increaser configured to increase the angular velocity of a fluid stream, a flow splitter configured to split the fluid stream to form a concentrated-particle stream and a reduced-particle stream, and an exit conduit configured to receive the reduced-particle stream. An inducer assembly for a turbine engine includes an inducer with a flow passage having an inducer inlet and an inducer outlet in fluid communication with a turbine section of the engine, and a particle separator, which includes a particle concentrator that receives a compressed stream from a compressor section of the engine and a flow splitter. A turbine engine includes a cooling air flow circuit which supplies a fluid stream to a turbine section of the engine for cooling, a particle separator located within the cooling air flow circuit, and an inducer forming a portion of the cooling air flow circuit in fluid communication with the particle separator. A method of cooling a rotating blade of a turbine engine having an inducer includes directing a cooling fluid stream from a portion of turbine engine toward the rotating blade, separating particles from the cooling fluid stream by passing the cooling fluid stream through a inertial separator, accelerating a reduced- particle stream emitted from the inertial separator to the speed of the rotating blade, and orienting the reduced-particle stream by emitting the reduced-particle stream from the inertial separator into a cooling passage in the inducer.
Abstract:
An engine component for a gas turbine engine includes a film-cooled wall having a hot surface facing hot combustion gas and a cooling surface facing a cooling fluid flow. The wall includes one or more film holes that have an outlet provided on the hot surface and a contoured inlet provided on the cooling surface. A contoured portion in the cooling surface encompasses the inlets for two or more film holes in the wall.
Abstract:
A turbine engine having a bypass fluid conduit coupled to the turbine section includes at least one particle separator located within the bypass fluid conduit to separate particles from a bypass fluid stream prior to the bypass stream reaching the turbine section for cooling. A centrifugal separator for removing particles from a fluid stream includes an angular velocity increaser, a particle outlet, an angular velocity decreaser downstream of the angular velocity increaser, and a bend provided between the angular velocity increaser and the angular velocity decreaser.
Abstract:
An engine component assembly is provided for impingement cooling including discrete cooling features. An insert is located opposite and adjacent to a cooled surface of the engine component and includes a plurality of angled impingement air holes. A cooling fluid flow path is flowing on one side the cooled surface of the engine component and adjacent to the insert and passes through the angled cooling holes of the insert in order to cool the cooled surface of the engine component. Additionally, a plurality of discrete cooling features may be located along the cooled surface of the engine component opposite the plurality of cooling holes in the insert.
Abstract:
A dust mitigation system for airfoils (32) includes a plurality of contoured tip turns (60, 62) which curve about at least two axes (A,B). This inhibits recirculation areas common within airfoils and furtherinhibits dust build up within the cooling flow path of the airfoil.