Abstract:
A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
Abstract:
A method includes constructing a map of an environment based on mapping data produced by an autonomous cleaning robot in the environment during a first cleaning mission. Constructing the map includes providing a label associated with a portion of the mapping data. The method includes causing a remote computing device to present a visual representation of the environment based on the map, and a visual indicator of the label. The method includes causing the autonomous cleaning robot to initiate a behavior associated with the label during a second cleaning mission.
Abstract:
An autonomous mobile robot includes a drive system to support the robot above a surface, a sensor system configured to generate a signal indicative of a location of the robot on the surface, and a controller operably connected to the drive system and the sensor system. The drive system is operable to navigate the robot about the surface. The controller is configured to execute instructions to perform operations including establishing a behavior control zone on the surface, controlling the drive system, in response to establishing the behavior control zone on the surface, to maneuver the robot to a location of the behavior control zone on the surface, and maneuvering, using the drive system, the robot about the surface and initiating a behavior in response to determining, based on the signal indicative of the location of the robot, that the robot is proximate the behavior control zone.
Abstract:
A method includes receiving mapping data collected by an autonomous cleaning robot as the autonomous cleaning robot moves about an environment. A portion of the mapping data is indicative of a location of an object in the environment. The method includes defining a clean zone at the location of the object such that the autonomous cleaning robot initiates a clean behavior constrained to the clean zone in response to encountering the clean zone in the environment.
Abstract:
Described herein are systems, devices, and methods for maintaining a valid semantic map of an environment for a mobile robot. A mobile robot comprises a drive system, a sensor circuit to sense occupancy information, a memory, a controller circuit, and a communication system. The controller circuit can generate a first semantic map corresponding to a first robot mission using first occupancy information and first semantic annotations, transfer the first semantic annotations to a second semantic map corresponding to a subsequent second robot mission. The control circuit can generate the second semantic map that includes second semantic annotations generated based on the transferred first semantic annotations. User feedback on the first or the second semantic map can be received via a communication system. The control circuit can update first semantic map and use it to navigate the mobile robot in a future mission.
Abstract:
Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a controller circuit that directs a drive of the mobile robot to navigate the mobile robot through an environment using camera-based navigation system and a camera including optics defining a camera field of view and a camera optical axis, where the camera is positioned within the recessed structure and is tilted so that the camera optical axis is aligned at an acute angle of above a horizontal plane in line with the top surface and is aimed in a forward drive direction of the robot body, and the camera is configured to capture images of the operating environment of the mobile robot.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.