Abstract:
A process chamber with a computer system that controls the process chamber is connected to one or more spectrometers. The spectrometers may be part of an interferometer or may be an optical emission spectrometer. The spectrometers may be CCD or photodiode arrays of 2,048 elements. An input board forms part of the computer system and is directly connected to the spectrometers. The input board provides data from the spectrometers to dual port memory, which is directly accessible to the CPU of the computer system. The use of a state machine and adder on the input board allows computation and placement of the data from the spectrometers on to the dual port memory, so that the CPU is not needed for such placement.
Abstract:
A central controller for use in a semiconductor manufacturing equipment integrates a plurality of controllers with an open architecture allowing real-time communication between the various control loops. The central controller includes at least one central processing unit (cpu) executing high level input output (i/o) and control algorithms and at least one integrated i/o controller providing integrated interface to sensors and control hardware. The integrated i/o controller performs basic i/o and low level control functions and communicates with the CPU through a bus to perform or enable controls of various subsystems of the semiconductor manufacturing equipment. A method for controlling a plurality of sensors and a plurality of control hardware for use in a semiconductor manufacturing equipment loads an application software onto a cpu board that is plugged in a bus. Sensors and control hardware are linked to electrical controllers that are mounted onto a single circuit board which occupies an address block in a memory space of the bus. The single circuit board is then plugged in the bus and the sensors and control hardware are controlled via the application software.
Abstract:
Apparatus and methods are provided to detect and control a voltage potential (68) applied in a plasma chamber (40) for processing a semiconductor wafer (46). The plasma chamber includes circuitry (82) for monitoring and adjusting a pulsed RF bias voltage signal (6 to be applied to a chuck (66) in the plasma chamber, where the chuck is configured to mount the wafer for processing. Further include is a feedback circuit for adjusting the voltage of the pulsed RF bias voltage signal applied to the chuck according to a difference between the feedback signal and a desired voltage value of the RF bias voltage signal.