Abstract:
An LED device has a cap containing one or more quantum dot (QD) phosphors. The cap may be sized and configured to be integrated with standard LED packages. The QD phosphor may be held within the well of the LED package, so as to absorb the maximum amount of light emitted by the LED, but arranged in spaced-apart relation from the LED chip to avoid excessive heat that can lead to degradation of the QD phosphor(s). The packages may be manufactured and stored for subsequent assembly onto an LED device.
Abstract:
Disclosed herein are articles for use in phototherapy utilizing quantum dots (QDs). One embodiment is a medical dressing having an occlusive layer and translucent layer. Quantum dot light-emitting diode chips are configured within the occlusive layer to provide light of a specific wavelength for use in phototherapy. Another embodiment is a medical dressing having an occlusive layer and translucent layer, wherein quantum dot material is embedded or impregnated within one or both layers.
Abstract:
Materials and methods for preparing Cu2ZnSnS4 (CZTS) layers for use in thin film photovoltaic (PV) cells are disclosed herein. The CZTS materials are nanoparticles prepared by a colloidal synthesis in the presence of a labile organothiol. The organothiol serves as both a sulphur source and as a capping ligand for the nanoparticles.
Abstract:
A process is disclosed for producing quantum dots (QDs) by reacting one or more core semiconductor precursors with phosphine in the presence of a molecular cluster compound. The core semiconductor precursor(s) provides elements that are incorporated into the QD core semiconductor material. The core semiconductor also incorporates phosphorus, which is provided by the phosphine. The phosphine may be provided to the reaction as a gas or may, alternatively, be provided as an adduct of another material.
Abstract:
A process for producing nanoparticles incorporating ions selected from groups (13), (16), and (11) or (12) of the periodic table is described. The process comprises effecting conversion of a nanoparticle precursor composition comprising said group (13), (16), and (11) or (12) ions to the material of the nanoparticles in the presence of a selenol compound. A process for fabricating a thin film comprising nanoparticles incorporating ions selected from groups (13), (16), and (11) or (12) of the periodic table is also described, as well as a process for producing a printable ink formulation comprising said nanoparticles.
Abstract:
A composition of matter comprises a plurality of quantum dots and a metal thiol polymer that acts to stabilize the quantum dots. In certain embodiments, the metal thiol polymer is a zinc thiol polymer. The zinc thiol polymer may be a zinc alkanethiolate. The zinc alkanethiolate may be zinc dodecanethiolate (Zn-DDT). A composition comprising a plurality of quantum dots and a metal thiol polymer may be formulated with one or more additional polymers as a quantum dot-containing bead or as a quantum dot-containing composite material - e.g., a multilayer film.
Abstract:
An illuminated sign has a primary light source in spaced apart relation to a transparent or translucent substrate having quantum dot phosphors printed or coated thereon. The primary light source may be a blue LED, a white LED or an LED having a significant portion of its emission in the ultraviolet region of the spectrum. The LED may be a backlight for the transparent or translucent substrate and/or an edge light, a down light or an up light.
Abstract:
The present invention relates to a formulation incorporating nanoparticles, particularly quantum dot (QD) nanoparticles, preferably comprising ions from groups 13 and 15 of the Periodic Table into an optically clear medium (resin) to be used as a phosphor material in lighting and display applications, and as a down converting phosphor material in LEDs (light emitting diodes). The resin is compatible with QDs to allow high performance and stability of QD-based LEDs, lighting and display applications. The optically clear medium may be formed of a poly(meth)acrylate encapsulation medium derived from a (meth)acrylate monomer and a trivalent crosslinking compound. The encapsulation medium may also be derived from a laurylmethacrylate monomer and a multivalent crosslinking compound reacted in the presence of a photoinitiator.
Abstract:
Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
Abstract:
A scalable method for the manufacture of narrow, bright, monodisperse, photo-luminescent quantum dots prepared in the presence of a Group ll-VI molecular seeding cluster fabricated in situ from a zinc salt and a thiol or selenol compound. Exemplary quantum dots have a core containing indium, phosphorus, zinc and either sulfur or selenium.