Abstract:
A method and apparatus for efficient encoding of linear block codes uses a lookup table including a set of impulse responses to support faster performance by encoding in parallel. Advantages include a scalability that is lacking in existing schemes.
Abstract:
Techniques for polling fingers on a channel (which are fingers for which symbols are to be combined) to determine the last finger on the channel. As each finger is polled, the polled finger compares its state information with the state information for the channel to determine whether or not it is the last finger on the channel. If the polled finger is deemed as the last finger then, (1) the channel state information is updated with the polled finger state information, and (2) the symbols provided by the polled finger may be marked as being ready for subsequent processing. This avoids buffering the demodulated symbols for a duration time that is longer than the largest expacted difference between the earliest and the latest arriving mutipath components.
Abstract:
Apparatus and method for selecting an appropriate parameter at decompression are disclosed. In particular, when adaptive block size discrete cosine transform compression is used to compress data, different combinations of sub-blocks can be generated. To decompress the different combinations of sub-blocks, the appropriate parameter is selected based on block size assignment information and the address of data in the data block.
Abstract:
A packet-based processing system suitable for various applications, such as for a base station or a terminal in a wireless communication system, is described. The packet-based processing system may include multiple processing modules and at least one transport module. The processing modules may send packets to one another via a common packet interface and may operate asynchronously. The transport module(s) may forward the packets sent by the processing modules and may operate asynchronously with respect to the processing modules. Each processing module may include a network interface, at least one buffer, a packet parser, a packet builder, and at least one processing unit. Each processing module may support at least one service. Each packet may include a header and a payload. The header may include a source service address for a source service sending the packet and a destination service address for a recipient service receiving the packet.
Abstract:
A method and apparatus for compressing fixed point signals without introducing a bias. Signals are compressed according to a dithered rounding approach wherein signal values are rounded up and rounded down with approximately equal probability, canceling the bias that would otherwise result from the rounding operation. Numerical properties of the input signal are exploited in order to determine whether the signal value should be rounded up or down. Signal compression may, therefore, be introduced at multiple points within a system without accumulating a signal bias and degrading downstream performance. Further, one bit signal compression may be achieved in a particularly efficient fashion with a minimal amount of hardware.
Abstract:
Certain aspects of the present disclosure support techniques for collecting system information in a network on a chip (NoC). A dedicated packet may be transmitted from a source node to a destination node. As it traverses through the NoC, the dedicated packet may collect information from various nodes, which may be made available by the destination node. The collected information may be used in an effort to detect failures and collect statistics regarding the NoC.
Abstract:
A Wireless Code Division Multiple Access method and apparatus for determining the transmitted rate of a voice/data signal from a mobile station to a Base Station. Variable rate vocoders transmit voice at one of several predetermined frame rates. The receiver determines the transmitted rate based on one of several frame parameters. One of the parameters is received frame energy. The received frame energy is measured over the length of the relevant portion of the frame. Energy is measured over the half of the frame that can only contain energy if a full rate frame is sent. If the energy measured exceeds a threshold, then full rate is indicated. Else, energy is measured over the fourth of a frame that can only contain energy if a half rate frame is sent. If the energy exceeds a threshold, then half rate is indicated. The procedure is repeated for quarter and eighth rates.
Abstract:
Certain aspects of the present disclosure support a technique for optimized representation of variables in neural systems. Bit-allocation for neural signals and parameters in a neural network described in the present disclosure may comprise allocating quantization levels to the neural signals based on at least one measure of sensitivity of a pre-determined performance metric to quantization errors in the neural signals, and allocating bits to the parameters based on the at least one measure of sensitivity of the pre-determined performance metric to quantization errors in the parameters.
Abstract:
Apparatus and method for selecting an appropriate parameter at decompression are disclosed. In particular, when adaptive block size discrete cosine transform compression is used to compress data, different combinations of sub-blocks can be generated. To decompress the different combinations of sub-blocks, the appropriate parameter is selected based on block size assignment information and the address of data in the data block.
Abstract:
An apparatus, such as a modem or other component within a spread spectrum communication system, is described that introduces one or more "entropy" bits into a data stream to ensure that other components of the communication system readily detect data frame misalignment. In particular, an entropy bit is introduced within each frame to help ensure that the other components generate parity errors when not properly synchronized with the framing of the data stream. The entropy bits have values that change relatively frequently, and are unrelated to the other data bits of the frames. The entropy bit may, for example, be randomly or pseudo-randomly generated.