Abstract:
A computing device processor may be configured with processor-executable instructions to implement methods of using behavioral analysis and machine learning techniques to evaluate the collective behavior of two or more software applications operating on the device. The processor may be configured to monitor the activities of a plurality of software applications operating on the device, collect behavior information for each monitored activity, generate a behavior vector based on the collected behavior information, apply the generated behavior vector to a classifier model to generate analysis information, and use the analysis information to classify a collective behavior of the plurality of software applications.
Abstract:
Various implementations include unmanned autonomous vehicles (UAVs) and methods for providing security for a UAV. In various implementations, a processor of the UAV may receive sensor data from a plurality of UAV sensors about an object in contact with the UAV. The processor may determine an authorization threshold based on the received sensor data. The processor may determine whether the object is authorized based on the received sensor data and the determined authorization threshold.
Abstract:
Systems, methods, and devices of the various aspects enable detecting a malfunction caused by radio frequency (RF) interference. A computing device processor may identify a location of the computing device based on a plurality of real-time data inputs received by the computing device. The processor may characterize an RF environment of the computing device based on the identified location and the plurality of real-time data inputs. The processor may determine at least one RF emissions threshold based on the characterization of the RF environment. The processor may compare the characterization of the RF environment to the at least one RF emissions threshold, and may perform an action in response to determining that the characterization of the RF environment exceeds the at least one RF emissions threshold.
Abstract:
A computing device processor may be configured with processor-executable instructions to implement methods of using behavioral analysis and machine learning techniques to identify, prevent, correct, or otherwise respond to malicious or performance-degrading behaviors of the computing device. As part of these operations, the processor may generate user-persona information that characterizes the user based on that user's activities, preferences, age, occupation, habits, moods, emotional states, personality, device usage patterns, etc. The processor may use the user-persona information to dynamically determine the number of device features that are monitored or evaluated in the computing device, to identify the device features that are most relevant to determining whether the device behavior is not consistent with a pattern of ordinary usage of the computing device by the user, and to better identify or respond to non-benign behaviors of the computing device.
Abstract:
Various embodiments include methods and a memory data collection processor for performing online memory data collection for memory forensics. Various embodiments may include determining whether an operating system executing in a computing device is trustworthy. In response to determining that the operating system is not trustworthy, the memory data collection processor may collect memory data directly from volatile memory. Otherwise, the operating system to collect memory data from volatile memory. Memory data may be collected at a variable memory data collection rate determined by the memory data collection processor. The memory data collection rate may depend upon whether an available power level of the computing device exceeds a threshold power level, whether an activity state of the processor of the computing device equals a sleep state whether a security risk exists on the computing device, and whether a volume of memory traffic in the volatile memory exceeds a threshold volume.
Abstract:
Various aspects provide systems and methods for optimizing hardware monitoring on a computing device. A computing device may receive a monitoring request to monitor a portion of code or data within a process executing on the computing device. The computing device may generate from the monitoring request a first monitoring configuration parameter for a first hardware monitoring component in the computing device and may identify a non-optimal event pattern that occurs while the first hardware monitoring component monitors the portion of code or data according to the first monitoring configuration parameter. The computing device may apply a transformation to the portion of code or data and reconfigure the first hardware monitoring component by modifying the first monitoring configuration parameter in response to the transformation of the portion of code or data.
Abstract:
Various embodiments include systems, methods and devices for reducing the burden on mobile devices of memory data collection for memory forensics. Various embodiments may include monitoring for changes sections or portions of memory within the computing device that been identified by a network device based on a prior memory snapshot. When changes are detected, the computing device may determine whether data changes in the monitored sections or portions of memory satisfy a criterion for transmitting an incremental snapshot of memory. Such criteria may be defined in information received from the network device. When the criteria are satisfied, the computing device may transmit an incremental memory snapshot to the network device. The computing device may transmit to the network device results of analysis of the data changes observed in the memory. Various embodiments may be performed in a secure environment or in a memory collection processor within the computing device.
Abstract:
Systems, methods, and devices of the various aspects enable detecting anomalous electromagnetic (EM) emissions from among a plurality of electronic devices. A device processor may receive EM emissions of a plurality of electronic devices, wherein the receiving device has no previous information about any of the plurality of electronic devices. The device processor may cross-correlate the EM emissions of the plurality of electronic devices over time. The device processor may identify a difference of the cross-correlated EM emissions from earlier cross-correlated EM emissions. The device processor may determine that the difference of the cross-correlated EM emissions from the earlier cross-correlated EM emissions indicates an anomaly in one or more of the plurality of electronic devices.
Abstract:
Methods, and devices implementing the methods, use device-specific classifiers in a privacy-preserving behavioral monitoring and analysis system for crowd-sourcing of device behaviors. Diverse devices having varying degrees of "smart" capabilities may monitor operational behaviors. Gathered operational behavior information may be transmitted to a nearby device having greater processing capabilities than a respective collecting device, or may be transmitted directly to an "always on" device. The behavior information may be used to generate behavior vectors, which may be analyzed for anomalies. Vectors containing anomaly flags may be anonymized to remove any user-identifying information and subsequently transmitted to a remote recipient such as a service provider or device manufacture. In this manner, operational behavior information may be gathered about different devices from a large number of users, to obtain statistical analysis of operational behavior for specific makes and models of devices, without divulging personal information about device users.
Abstract:
Systems and methods are disclosed for automating customer service for a monitored device (MD). A method for an Internet of Everything management device to automate customer service for a monitored device comprises collecting sensor data from a plurality of sensors, wherein the plurality of sensors comprises a first sensor that is not included in the MD, determining whether the MD is exhibiting abnormal behavior based on an analysis of the collected sensor data, and transmitting a report to a customer service entity associated with the MD in response to a determination that the MD is exhibiting abnormal behavior.