Abstract:
The yield of a manufacturing process of a semiconductor device is increased. The productivity of a semiconductor device is increased. A first material layer is formed over a substrate, a second material layer is formed over the first material layer, and the first material layer and the second material layer are separated from each other, so that a semiconductor device is manufactured. In addition, a stack including the first material layer and the second material layer is preferably heated before the separation. The first material layer includes one or more of hydrogen, oxygen, and water. The first material layer includes a metal oxide, for example. The second material layer includes a resin (e.g., polyimide or acrylic). The first material layer and the second material layer are separated from each other by cutting a hydrogen bond. The first material layer and the second material layer are separated from each other in such a manner that water separated out by heat treatment at an interface between the first material layer and the second material layer or in the vicinity of the interface is irradiated with light.
Abstract:
A film-like member is supported in a flat shape by vacuum suction. A plurality of lift pins are arranged in a planar configuration and bear a film-like member placed on their upper ends. Tubular pads made of rubber for holding the film-like member by vacuum suction are attached to upper portions of the lift pins. The height of the lift pins can be adjusted by a screw fastening mechanism. The deformation of the film-like member can be corrected to a flat or concavely curved shape by suction from the pads. When the correction cannot be achieved by suction alone, the correction may be supplemented by ejection of air from a nozzle.
Abstract:
The yield of a manufacturing process of a display device is increased. The productivity of a display device is increased. A hydrogen-containing layer is formed over a substrate. Then, an oxygen-containing layer is formed over the hydrogen-containing layer. After that, a first layer is formed over the oxygen-containing layer with the use of a material containing a resin or a resin precursor. Subsequently, first heat treatment is performed on the first layer, so that a resin layer is formed. Next, a layer to be peeled is formed over the resin layer. The layer to be peeled and the substrate are separated from each other. The first heat treatment is performed in an oxygen-containing atmosphere.
Abstract:
To increase the yield of the separation process. To produce display devices formed through the separation process with higher mass productivity. A first layer is formed using a material including a resin or a resin precursor over a substrate. Then, first heat treatment is performed on the first layer, whereby a first resin layer including a residue of an oxydiphthalic acid is formed. Then, a layer to be separated is formed over the first resin layer. Then, the layer to be separated and the substrate are separated from each other. The first heat treatment is performed in an atmosphere containing oxygen.
Abstract:
A film suction mechanism is provided which can prevent a film-like member from warping or sagging for reliable suction, handing over, or the like of the film-like member. A film suction mechanism of the present invention is a film suction mechanism for processing or transferring a flexible film-like member. The film suction mechanism includes a suction unit having a function of attaching the film-like member thereto by suction and an air nozzle having a function of blowing pressurized air onto a first surface of the film-like member. The suction unit includes a plurality of suction pads. The suction unit is capable of attaching a second surface of the film-like member thereto by suction while the pressurized air is blown onto the first surface of the film-like member.
Abstract:
A yield in the step of bonding two members together is improved. A bonding apparatus includes a stage capable of supporting a first member having a sheet-like shape, a fixing mechanism capable of fixing one end portion of a second member having a sheet-like shape so that the second member overlaps with the first member, and a pressurizing mechanism capable of moving from a side of the one end portion of the second member to a side of the other end portion and spreading a bonding layer under pressure between the first member and the second member. The first member and the second member are bonded to each other.
Abstract:
The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
Abstract:
A flexible device is manufactured at low temperatures. A second substrate is bonded to a first substrate by a first adhesive layer. A first insulating layer, a transistor, and a second insulating layer are formed over the second substrate. Then, the first substrate and the second substrate are separated from each other while being heated at a first temperature. The heat resistant temperatures of the first substrate, the second substrate, and the first adhesive layer are a second temperature, a third temperature, and a fourth temperature, respectively. Each of the first insulating layer, the second insulating layer, and the transistor is formed at a temperature higher than or equal to room temperature and lower than the fourth temperature. The third temperature is higher than the fourth temperature and lower than the second temperature. The first temperature is higher than the fourth temperature and lower than the third temperature.
Abstract:
A separation apparatus (1) for separating a thin-film flexible stacked body (3) from a component (16) where the thin-film flexible stacked body (3) including an element layer is formed over a rigid substrate (2) such as a glass substrate, a quartz substrate, a ceramic substrate, or a metal substrate is provided. The separation apparatus (1) mainly includes a fixing device (10) for fixing the substrate (2) of the component (16), suction jigs (11) for lifting the flexible stacked body (3) by suction to be separated, circular suction pads (13) that are brought into direct contact with the flexible stacked body (3) and attached to the flexible stacked body (3) by suction, and clamp jigs (9) for holding an edge of the flexible stacked body (3). A position sensor such as a laser measuring instrument for measuring or monitoring a separation state of the flexible stacked body may be used together.
Abstract:
A wedge-shaped jig (6) is inserted into a gap between a first substrate (21) and a second substrate (22) at a corner (221) of the second substrate (22) and separation of the attached first substrate (21) and second substrate (22) starts to proceed; then, a second suction pad (53) of a second suction portion (51), which is the closest to the corner (221), moves upward. Then, first suction pads (43) of first suction portions (41a), (41b), and (41c) sequentially move upward such that one side of the second substrate (22) separates from the stacked body. Although the second substrate (22) warps as the separation of the second substrate (22) proceeds, each of the plurality of first suction pads (43) elastically deforms. Therefore, the first suction pads (43) can be prevented from being detached from the second substrate (22), and the substrate (22) can be securely separated from the stacked body.