Abstract:
A non- volatile memory cell includes a semiconductor substrate of first conductivity type, first and second spaced-apart regions in the substrate of second conductivity type, with a channel region in the substrate there between. A floating gate has a first portion disposed vertically over a first portion of the channel region, and a second portion disposed vertically over the first region. The floating gate includes a sloping upper surface that terminates with one or more sharp edges. An erase gate is disposed vertically over the floating gate with the one or more sharp edges facing the erase gate. A control gate has a first portion disposed laterally adjacent to the floating gate, and vertically over the first region. A select gate has a first portion disposed vertically over a second portion of the channel region, and laterally adjacent to the floating gate.
Abstract:
A non- volatile memory cell includes a substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type spaced apart from the first region, forming a channel region therebetween. A floating gate is disposed over and insulated from a first portion of the channel region which is adjacent the first region. A select gate is disposed over a second portion of the channel region adjacent to the second region, the select gate being formed of a metal material and being insulated from the second portion of the channel region by a layer of silicon dioxide and a layer of high K insulating material. A control gate is disposed over and insulated from the floating gate. An erase gate is disposed over and insulated from the first region, and disposed laterally adjacent to and insulated from the floating gate.
Abstract:
A method of forming a semiconductor device starts with a substrate of silicon, a first insulation layer on the silicon, and a silicon layer on the first insulation layer. The silicon layer and the insulation layer are removed just from a second substrate area. A second insulation layer is formed over the silicon layer in the substrate first area and over the silicon in the second substrate area. A first plurality of trenches is formed in the first substrate area that each extends through all the layers and into the silicon. A second plurality of trenches is formed in the second substrate area that each extends through the second insulation layer and into the silicon. An insulation material is formed in the first and second trenches. Logic devices are formed in the first substrate area, and memory cells are formed in the second substrate area.
Abstract:
A memory device having a pair of conductive floating gates with inner sidewalls facing each other, and disposed over and insulated from a substrate of first conductivity type. A pair of spaced apart conductive control gates each disposed over and insulated from one of the floating gates, and each including inner sidewalls facing each other. A pair of first spacers of insulation material extending along control gate inner sidewalls and over the floating gates. The floating gate inner sidewalls are aligned with side surfaces of the first spacers. A pair of second spacers of insulation material each extend along one of the first spacers and along one of the floating gate inner sidewalls. A trench formed into the substrate having sidewalls aligned with side surfaces of the second spacers. Silicon carbon disposed in the trench. Material implanted into the silicon carbon forming a first region having a second conductivity type.
Abstract:
A method of forming an MOS transistor by forming a poly gate over and insulated from a substrate, forming a layer of protective insulation material on the poly gate, and then performing a first implant of dopant material into portions of the substrate adjacent the poly gate, wherein the layer of protective insulation material and the poly gate block most or all of the first implant from reaching a portion of the substrate underneath the poly gate. One or more spacers are then formed adjacent the poly gate, followed by a second implant of dopant material into portions of the substrate adjacent to the one or more spacers.