Abstract:
A laser welding method, a laser welded joint, an outer panel, and a structure for a rolling stock. In the laser welding method, a plurality of plate-like members (1) and (2) are overlapped with each other and a laser beam is continuously radiated thereto from the surface outside direction of the members while moving the laser beam. Polishing treatment is applied to the outer surface of the plate-like member (2) on the opposite side (1) of the outer surface to which the laser beam is radiated in a direction approximately parallel with the direction of weld lines by the laser beam beforehand so that the traces of the welding are visually inconspicuous.
Abstract:
A method and an apparatus pertaining to polarization combining in additive manufacturing may involve emitting two or more beams of light with a first intensity. Each of the two or more beams of light may be polarized and may have a majority polarization state and a minority polarization state. A respective polarization pattern may be applied on the majority polarization state of each of the two or more beams of light. The two or more beams of light may be combined to provide a single beam of light.
Abstract:
A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
Abstract:
An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved chamber designs, multiple chambers, powder handling and re-use systems, and powder characterization methods are disclosed.
Abstract:
A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
Abstract:
A method and apparatus for permanently joining two or more metallic vehicle frame components using magnetic impulse welding techniques is disclosed. In a first embodiment, an overlap joint is formed by the joinder of two individual open channel side rail sections to form a portion of a vehicle frame side rail. The first side rail section is initially formed slightly smaller in size than the second side rail section so that it may be disposed telescopically therein with clearance. An electromagnetic coil is provided for generating a magnetic field which causes the side rail sections to move toward one another at a high velocity. The high velocity impact and the large pressures cause the two side rail sections to weld or molecularly bond. Alternatively, a bracket can be joined to a side rail section in a similar manner. In a second embodiment, a pair of closed channel structural members are formed using hydroforming techniques. The end portions of two hydroformed structural members are then disposed concentrically within an electromagnetic coil. When energized, the electromagnetic coil causes the end portions to move toward one another so as to weld or molecularly bond.
Abstract:
A method and an apparatus for collecting a powdered material after a print job in powder bed fusion additive manufacturing may involve a build platform supporting a powder bed capable of tilting, inverting, and shaking to separate the powder bed substantially from the build platform in a hopper. The powdered material may be collected in a hopper for reuse in later print jobs. The powder collecting process may be automated to increase efficiency of powder bed fusion additive manufacturing.
Abstract:
A method and an apparatus of a powder bed fusion additive manufacturing system that enables a quick change in the optical beam delivery size and intensity across locations of a print surface for different powdered materials while ensuring high availability of the system. A dynamic optical assembly containing a set of lens assemblies of different magnification ratios and a mechanical assembly may change the magnification ratios as needed. The dynamic optical assembly may include a transitional and rotational position control of the optics to minimize variations of the optical beam sizes across the print surface.
Abstract:
A manipulator device such as a robot arm that is capable of increasing manufacturing throughput for additively manufactured parts, and allows for the manipulation of parts that would be difficult or impossible for a human to move is described. The manipulator can grasp various permanent or temporary additively manufactured manipulation points on a part to enable repositioning or maneuvering of the part.