Abstract:
An integrated system (400) for detecting a red palm weevil (RPW), farm fire, and soil moisture includes an optical fiber (220) configured to be extending to a tree, and a distributed acoustic sensor (DAS) box (201) connected to the optical fiber (220). The DAS box (201) is configured to process first to third different optical signals (422, 430, 432, 436) reflected from the optical fiber (220), to determine a presence of the RPW from the first optical signal (422), a temperature at a location along the optical fiber (220) from the second optical signals (430, 432), and a moisture at a location around the tree from the third optical signal (436).
Abstract:
Ein MEMS umfasst ein Substrat, dass eine Kavität aufweist. Das MEMS umfasst eine in der Kavität angeordnete bewegliche Schichtanordnung umfassend eine erste Balken, eine zweite Balken und eine zwischen der ersten Balken und zweiten Balken angeordnete und von denselben an diskreten Bereichen elektrisch isoliert fixierte dritte Balken. Die bewegliche Schichtanordnung ist ausgebildet, um ansprechend auf ein elektrisches Potenzial zwischen der ersten Balken und der dritten Balken oder um ansprechend auf ein elektrisches Potenzial zwischen der zweiten Balken und der dritten Balken eine Bewegung entlang einer Bewegungsrichtung in einer Substratebene auszuführen. Die erste, zweite und dritte Balken sind Teil einer ersten Schicht der beweglichen Schichtanordnung. Die bewegliche Schichtanordnung weist eine zweite Schicht auf, die entlang einer Richtung senkrecht zu der Substratebene benachbart zu der ersten Schicht angeordnet ist. Die zweite Schicht ist entlang der Bewegungsrichtung beweglich angeordnet.
Abstract:
Methods and apparatus to communicate via a welding arc are disclosed. An example welding-type power supply includes a power converter, a weld monitor, and an arc modulator. The power converter outputs welding power to sustain a welding-type arc at a welding-type torch. The weld monitor monitors one or more aspects of a weld performed using the welding-type arc and the welding-type torch, and selects an audio message based on the one or more aspects. The arc modulator configured to modify the welding-type arc to output the selected audio message as a plasma speaker.
Abstract:
Laser-based system and optical microphone having increased bandwidth. The system includes a laser microphone to transmit a laser beam towards a human speaker; to receive an optical feedback signal reflected back from the human speaker; and to perform self-mixing interferometry. An optical feedback signal bandwidth enhancer improves the bandwidth of the optical feedback signal, to improve the quality of remote speech detection that is based on the optical feedback signal. The bandwidth enhancement utilizes takes into account one or more of: the identity of the face-region hit by the laser beam; the skin color or shade; obstruction of the skin by hair or by accessories; ability to allocate increased processing resources for processing of the optical feedback signal; ability to modify modulation frequency of the optical feedback signal; Signal to Noise Ratio (SNR) estimation; bandwidth estimation; acoustic-optical transmission channel estimation; or other suitable parameters.
Abstract:
This invention presents a multi-channel remote audio monitoring device based on a heterodyne interferometric laser Doppler vibrometer. Device transmits two invisible laser beams to a reflecting surface being vibrated by sound sources in the proximity. Reflected beams constituting two channels are then received back and converted into audible signals for on-line listening and on-line storing. Aforementioned signals can also be processed for on-line noise reduction purposes through a graphical user interface and a filtering module.
Abstract:
Devices and methods for photoacoustic tomography are disclosed herein. One exemplary photoacoustic tomography device uses a laser to produce acoustic waves in a sample. A transducer receives the acoustic waves through a slit formed by one or more blades positioned substantially parallel to the receiving aperture of the transducer. An acoustic absorber is affixed to each of the one or more blades along a surface proximal to the transducer. A processor acquires acoustic data and reconstructs photoacoustic tomographic images based on the acquired data. Reconstructing the image involves setting reconstruction parameters, defining a reconstruction area, reconstruction position, and pixel size, and calculating an acoustic travelling path for the sample to each transducer element. The acoustic travelling paths are saved into a three-dimensional array.