US08922699B2
A zoom lens includes a fixed first lens group having a positive refracting power, a second lens group having a negative refracting power and movable along an optical axis, a fixed third lens group having a positive refracting power, a fourth lens group having a negative refracting power and movable along the optical axis, and a fixed fifth lens group, disposed in order from the object side to the image side. The following expressions are satisfied: 0.5
US08922694B2
An image capturing apparatus for capturing the image of a subject includes: a lock/unlock unit adapted to lock and unlock operation of the image capturing apparatus; a registration unit adapted to register a main item and a sub-item that have been selected by a user, wherein the main item is a main setting item among operation items of the image capturing apparatus and the sub-item is a setting item in a layer lower than that of the main item; and a control unit adapted to limit operation solely to a release operation of the image capturing apparatus and to the main item and sub-item, which have been registered by the registration unit, in a case where operation of the image capturing apparatus has been locked by the lock/unlock unit.
US08922693B2
An imaging apparatus is capable of concurrently shooting an image displayed by a display and a determined sub-area designated in the image. The imaging apparatus includes an optical system that collects light from a subject for image formation, an imaging device that generates image data by photoelectrically converting the light, a display that can display an image corresponding to the image data, an input unit, an effective region determination unit that determines an effective region in which the determined sub-area can be set through input of a signal from the input unit, based on characteristic information of the optical system corresponding to a shooting condition, and a display control unit that causes the display to display information indicating the effective region in accordance with a result of determination by the effective region determination unit.
US08922690B2
An image sensor including a pixel unit, the pixel unit including a photodiode, a first color filter and a second color filter each disposed in a different position on a plane above the photodiode, and a first on-chip lens disposed over the first color filter and a second on-chip lens disposed over the second color filter.
US08922681B2
A digital camera (1) includes: an imaging unit (16) having an imaging element that includes a plurality of pixels, and generates a pixel value for each of the plurality of pixels as image data; a position specification unit (53) that specifies a position of a defective pixel among the plurality of pixels, in the image data generated by the imaging unit (16); a region specification unit (54) that specifies a region in the image data in which image noise occurs due to the defective pixel, based on the position specified by the position specification unit (53); and a correction unit (55) that corrects a pixel value of each of a plurality of pixels included in the region in the image data specified by the region specification unit (54), based on a weighted average of pixels values of a plurality of pixels located at a periphery of the region.
US08922678B2
The present invention discloses an electronic apparatus, an image capturing apparatus and a method thereof. The image capturing method comprises the following steps of: capturing a plurality of temporal images by an image capturing module, and setting one of the temporal images as a base image by a processing module; dividing each temporal image into a plurality of temporal image blocks, and dividing the base image into a plurality of base image blocks by the processing module; determining whether the difference between each temporal image block and the corresponding base image block is lower than a threshold value by the processing module; integrating the temporal image block and the corresponding base image block to generate a final image by the processing module when the difference between the temporal image block and the corresponding base image block is lower than the threshold value.
US08922675B2
An image file generation device includes: an image file generation unit that generates an image file having stored therein a plurality of sets of image data obtained in a batch via an image sensor; and an image recording unit that records the image file into a storage medium, wherein: if the image file generation unit determines that an image file-splitting condition has been satisfied while the batch of image data is being obtained via the image sensor, the image file generation unit ends image data storage into the current image file and starts image data storage into a new image file.
US08922674B2
A method for facilitating color balance synchronization between a plurality of video cameras within a system of video cameras includes detecting an object in a video sequence captured by a video camera in the system, determining an object color histogram for the detected object, updating a camera specific reference color histogram using the determined object color histogram, and determining one or more camera specific color histogram compensation coefficients by comparing the camera specific reference color histogram with a system reference color histogram. A system for facilitating color balance synchronization between a plurality of video cameras includes a video camera being connectable to a network of video cameras.
US08922666B2
An information communication method that enables communication between various devices includes: transmitting position information indicating a position of an image sensor; receiving an ID list; setting an exposure time of the image sensor; obtaining a bright line image including a bright line, by capturing a subject by the image sensor; obtaining information by demodulating data specified by a pattern of the bright line included in the obtained bright line image; and searching the ID list for identification information that includes the obtained information.
US08922659B2
A dynamically reconfigurable video surveillance system includes at least one video camera, a remote server, at least one viewing terminal, means making it possible to record the video sequences captured by the camera or cameras, said system being characterized in that: the video camera or cameras and the remote server include means for communicating with one another across a telecommunications network; the video camera or cameras include means for compressing the video sequences captured, the compression rate being adapted dynamically by taking account of the control messages originating from the remote server; the video camera or cameras include means for analyzing said video sequences in the compressed domain, to characterize the activity detected in their field of vision and to forward the result of this characterization to the remote server; the remote server include means for computing for each of the compressed video streams originating from the video camera or cameras a command making it possible to parametrize each of them by taking account of the signaling data received.
US08922656B2
A video processing system (10) for automatic license plate recognition (ALPR) provides an interface between video cameras (14, 16) and a host computer (20) through a single high speed USB connection (18). The system (10) supports four simultaneous composite video channels (28A, 28B, 28C, 28D) with two channels dedicated to an IR monochrome video and two channels dedicated to color video. Compression software incorporates a high speed memory for buffering and stripping unnecessary data from a digitized data stream. Monochrome channel data and color channel data are marked with an incrementing index to tag them with frame identification. As a result, processing software in the host computer can re-align the monochrome and color video information after processing a license plate image, regardless of the order of data arrival. Color overview and monochrome recognition images are provided at the same time, and thus show the same plate or vehicle.
US08922653B1
A crib mobile and surveillance system which communicates video data captured by a camera within a mobile member housing, and sounds received by a microphone disposed in a base, to a handheld monitor; the video data displayed and broadcast in real time on a monitor screen on the handheld monitor to remotely monitor a child lain in a crib having the present device. and to operate a plurality of modes, each of which is selectable, activated, and deactivated independently and concurrently at the base of the device and remotely by the handheld monitor.
US08922650B2
One embodiment of the present invention relates to a method for facilitating a geographic video data interface and interactive collaboration system. The method includes displaying representations of stored video data sets on an interactive geographic interface to facilitate collaboration among users. The interactive geographic interface includes a visual representation which may be manipulated including pan, zoom level, content, filtering, map type, elevation, etc. Video data sets are received from the video owner including at least video data/sequences and associated characteristic data. The received video data sets are correlated with a geographic location at which the video data was captured. The correlated geographic location is aggregated with the video data set. The video data set is displayed on the interactive geographic interface by a visual representation at the correlated location. Collaboration data about the video data set is received from users or clients other than the video owner.
US08922643B2
A light emitting diode (LED) inspection apparatus includes at least one LED including a phosphor applied on an emission surface, a first lighting unit to emit visible light to the LED, a second lighting unit to emit ultraviolet (UV) light to the LED, a photographing unit to generate at least one first image data by photographing the visible light reflected from the LED and to generate at least one second image data by photographing the UV light reflected from the LED, and a determination unit to determine a defect in appearance and emission characteristics of the LED using the at least one first image data and second image data.
US08922634B2
An image pickup apparatus includes: an objective optical system for focusing a bundle of light rays from an object into an image; an image sensor placed in the vicinity of the image-forming position of the objective optical system; a dividing element placed between the objective optical system and the image sensor and used for dividing a bundle of light rays from the objective optical system into reflected and transmitted bundles of light rays; a first reflection member for reflecting back the bundle of light rays reflected by the dividing element; and a second reflection member for reflecting the bundle of light rays transmitted by the dividing element, wherein the bundle of light rays reflected by the first reflection member via the dividing element is focused to form an image on a first area of the image sensor, and the bundle of light rays reflected by the second reflection member is focused to form an image on a second area of the image sensor, the second area of the image sensor being different from the first area of the image sensor.
US08922624B2
An optical observation instrument has two optical transmission channels for transmitting two partial ray bundles (9A, 9B). The optical observation instrument has a main objective (1) common to the optical transmission channels, an electronic image sensor (7) for sequentially recording the partial ray bundles (9A, 9B), an intermediate imaging optical system (3) between the main objective (1) and the image sensor (7) and common to the optical transmission channels, and a tilting mirror matrix (5) between the main objective (1) and the image sensor (7). The intermediate imaging optical system (3) is arranged so that the respective partial ray bundle (9A, 9B) is deflected toward the image sensor (7) and passes the intermediate imaging optical system (3) both on the way from the main objective (1) to the tilting mirror matrix (5) and on the way from the tilting mirror matrix (5) to the image sensor (7).
US08922621B2
A method of storing 3D image data in a recording medium includes: loading, in a predetermined file type field, image type information indicating either one of a single stereoscopic image or a compound image including a monoscopic image and a stereoscopic image; loading, in a predetermined image configuration information container field, scene descriptor information indicating temporal and spatial relations between a plurality of media objects included in the three-dimensional image, object configuration information indicating attributes of each media object of said plurality of media objects and a configuration relation between encoded streams of the plurality of media objects, configuration information of the encoded streams; loading in an image data container field media data of an image to be stored; and loading, in a meta container field, metadata including information for playing the 3D image data.
US08922618B2
A technique includes configuring a monitor to be longitudinally translated along a work surface and pivoted about an axis that is substantially parallel to a normal of the work surface.
US08922613B2
A light beam scanning device which is capable of performing high-accuracy light amount control without complicated control even when the device includes a laser diode having non-linear I-L characteristics. Gain circuits set the amount of light to be emitted from the laser diode. A PD circuit board detects the amount of the emitted light. A laser controller controls the amount of the emitted light by adjusting drive current applied to the laser diode based on a detection output from the PD circuit board. A CPU corrects data for correcting the drive current. The CPU decides a light amount correction range for correcting the light amount based on the correction data, calculates the slope of the I-L characteristics in the light amount correction range based on light amounts at two points within the light amount correction range and drive currents associated with the respective light amounts, and corrects the correction data using the calculated slope.
US08922610B2
A thermal head and a thermal printer are disclosed. The head includes a substrate, heat generating members, an edge portion, and first and second reinforcing members. The substrate includes: first and second surfaces opposing to each other; and an end face connecting the first and second surfaces. The heat generating members are parallel to the end face and located on the substrate. The edge portion is located on the substrate, crosses an array direction of the heating generating members, and includes first, second and third edge portions on the first main surface, the second main surface and the first end face, respectively. The first reinforcing member is located on the first, second and third edge portions. The second reinforcing member is located on the first edge portion, and separated from the first reinforcing member.
US08922609B2
According to an embodiment, a method for color erasing process includes the steps of: supplying a power to a heat source configured to heat a sheet having an image formed thereon using a color erasable material so as to cause heat generation as warming-up control; stopping the power supply to the heat source for a predetermined period of time in the warming-up control if the temperature of the heat source is increased starting from a temperature lower than a predetermined reference value that is lower than a color erasing temperature of the color erasable material and exceeds the predetermined reference value; performing maintenance control that is power supply control to maintain the temperature of the heat source at the target temperature; and performing, after the passage of the predetermined period of time, a color erasing process by the heat source.
US08922601B2
Embodiments may be directed to a liquid crystal display apparatus, including a plurality of pixels, wherein each pixel of the plurality of pixels includes a first sub-pixel and a second sub-pixel, wherein the first sub-pixel and the second sub-pixel of a same pixel receive a same data signal and gate signal, wherein the first sub-pixel and the second sub-pixel include a first pixel electrode and a second pixel electrode, respectively, and wherein the first pixel electrode and the second pixel electrode have a first voltage difference at least during a light-emitting period, when a backlight unit emits light.
US08922597B2
A liquid crystal display device includes a plurality of pixel circuits, data lines, and a data-line driving circuit connected to the data lines. Each of the pixel circuits includes a pixel capacitance having one end provided with a common potential. In accordance with a grayscale value for one of the plurality of pixel circuits, the data-line driving circuit selectively outputs a positive-polarity signal and a negative-polarity signal to the one pixel circuit. The data-line driving circuit outputs the positive-polarity signal and the negative-polarity signal so that an average of a potential of the positive-polarity signal and a potential of the negative-polarity signal corresponding to the grayscale value changes in accordance with the grayscale value, a temperature, and a position of the one pixel circuit.
US08922591B2
A system and method for generating a simulated three-dimensional object is disclosed. An initial image of a three-dimensional object is generated at an initial reference position on X, Y and Z axes. A number of displacement images of the object is generated at each of a number of angular offsets about one or more of the X, Y, or Z axes. Each of the displacement images are displayed on an electronic display in a sequence according to a direction around one or more of the X, Y, or Z axes. The electronic display is then rotated around the one or more of the X, Y, or Z axes at a speed synchronized to the spaced angles of displacement of the plurality of images.
US08922583B2
A method of manipulating a three-dimensional (3D) virtual objects at a wireless device is disclosed and includes detecting a press on a 3D sensor array and moving the 3D virtual object in response to the press. Further, the method includes detecting a release of the press on the 3D sensor array and stopping the 3D virtual object.
US08922581B2
A data processing device includes a receiving module, a rendering module and a color compensation module. The rendering module receives image data from the receiving module and renders the image data into first, second, third and fourth sub-pixel data based on a layout of a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel and the color compensation module compensates for a color of the first, second and third sub-pixel data. The color compensation module converts the first, second and third sub-pixel data into first, second and third intermediate data, respectively, adds first, second and third delta values, which are determined based on the fourth sub-pixel data, to the first, second and third intermediate data, and thereby generates first, second and third compensation data.
US08922580B2
Modifying a color lookup table includes receiving a first image, a first color lookup table (CLUT) indexed in a first image color space, and a second CLUT indexed in a colorimetric space. Tracer pixels from the second CLUT are generated and retained, each tracer pixel including color coordinates of a corresponding unique node in the first CLUT. Tracer pixels are inserted into the first image, and tracer pixels are tracked. Color adjustments are made using image editing software to generate an adjusted combined image having adjusted tracer pixels. The adjusted tracer pixels are extracted. The second CLUT is converted to a third CLUT having a size N1×N2×N3×N4 by replacing each of the output-device color coordinates of the second CLUT nodes by modified device color coordinates computed from the adjusted color coordinates of the adjusted tracer pixels.
US08922579B2
A VCI (visual context indicator) color is assigned deterministically and proactively at runtime to user data contexts, and is not stored in the database, spreadsheet, or other context. VCI colors can be high contrast friendly colors. The same color is assigned to a given context each time the application runs unless the context's identifying property has changed. Color assignments are not made by users or by the application's designer, but are done instead by hashing from a context's identifying property into a VCI color palette containing, e.g., eight to sixteen colors. Unlike text-selection coloring, VCI coloring is based on the user data context's identifying property. The color assignment visually indicates context by displaying the context's name in the VCI color, or by displaying a graphical element in the VCI color near the context name. VCI color assignment also shows the occurrence and result of changes in user data context.
US08922577B2
Provided is an image processing apparatus. The image processing apparatus may synthesize an input frame with texture information of another frame and provide an output frame with an enhanced texture component.
US08922575B2
Tile cache techniques are described. In at least some embodiments, a tile cache is maintained that stores tile content for a plurality of tiles. The tile content is ordered in the tile cache to match a visual order of tiles in a graphical user interface. When tiles are moved (e.g., panned and/or scrolled) in the graphical user interface, tile content can be retrieved from the tile cache and displayed.
US08922564B2
A runtime management system is described herein that allows a hosting layer to dynamically control an underlying runtime to selectively turn on and off various subsystems of the runtime to save power and extend battery life of devices on which the system operates. The hosting layer has information about usage of the runtime that is not available within the runtime, and can do a more effective job of disabling parts of the runtime that will not be needed without negatively affecting application performance or device responsiveness. The runtime management system includes a protocol of communication between arbitrary hosts and underlying platforms to expose a set of options to allow the host to selectively turn parts of a runtime on and off depending on varying environmental pressures. Thus, the runtime management system provides more effective use of potentially scarce power resources available on mobile platforms.
US08922556B2
A light gathering process may reduce the computational resources and storage required to render a scene with a participating homogeneous media. According to some implementations, Efficiency may be obtained by evaluating the final radiance along a viewing ray directly from the lighting rays passing near to it, and by rapidly identifying such lighting rays in the scene. To facilitate a search for nearby lighting rays, the lighting rays and viewing rays may be represented as a 6D point and a plane according to the corresponding Plucker coordinates and coefficients, respectively.
US08922553B1
An improved modeling system and associated techniques are described herein. In various embodiments, a modeling system generates a spatially local PCA model where the parts are connected with continuity constraints (e.g., soft constraints) in the boundaries. Experimental results on 3D face modeling show that the spatially local PCA model generalizes better than a holistic model. Moreover, the modeling system smoothly varies local control points for face posing in animation.
US08922551B2
A method for displaying a two-dimensional image in a three-dimensional view. The two-dimensional image is formed by a plurality of objects representing elements of an industrial system. The three-dimensional view is displayed on a display of a control system of the industrial system, wherein at least one object is associated with a parameter value pertaining to a state of a corresponding element in the industrial system. The method includes determining the parameter value for the object; mapping the parameter value to a depth layer, which depth layer defines part of the three-dimensional view; and displaying the object in the depth layer. A corresponding control system is also presented herein.
US08922547B2
Disclosed herein is a 3D model shape transformation apparatus. The 3D model shape transformation apparatus includes a camera unit, a shape restoration unit, a skeleton structure generation unit, and a skeleton transformation unit. The camera unit obtains a plurality of 2D images in a single frame by capturing the shape of an object. The shape restoration unit generates a 3D volume model by restoring the shape of the object based on the plurality of 2D images. The skeleton structure generation unit generates the skeleton structure of the 3D volume model. The skeleton transformation unit transforms the size and posture of the 3D volume model into those of a template model by matching the skeleton structure of the template model with the skeleton structure of the 3D volume model.
US08922544B2
A method for characterizing and eliminating the effect of propagation delay on data and monitor lines of AMOLED panels is introduced. A similar technique may be utilized to cancel the effect of incomplete settling of select lines that control the write and read switches of pixels on a row.
US08922540B2
An output circuit is capable of supporting a high-speed operation, suppressing power consumption, and controlling its area. The output circuit has a differential input stage, an output amplification stage, and an amplification boost circuit, in which the amplification boost circuit has a differential pair of a second conductivity type and load element pair, and includes a first current source circuit for controlling current supply to an input node of a second current mirror circuit of the differential input stage and boost the charging operation of the output amplification stage according to a voltage difference between input and output voltages, and a second current source circuit for controlling current supply to an output node of a first current mirror circuit of the differential input stage and boost the discharging operation of the output amplification stage.
US08922527B2
Methods and apparatuses of a multi-purpose stylus antenna are described. One device includes a processing device comprising a switch, an antenna circuit, and a capacitance sensor. The switch is configured to couple a conductive element between the antenna circuit and the capacitance sensor. The processing device is configured to communicate data to or from a stylus when the switch is coupled to the antenna circuit and to measure capacitance associated with the conductive element when the switch is coupled to the capacitance sensor.
US08922518B2
A method for providing a graphical user interface on a display of a device includes: displaying a photograph image on the display of the device; receiving a touch input made on the display; superimposedly displaying a plurality of control guides at a location corresponding to the touch input over the displayed photograph image in response to the touch input; receiving a drag input corresponding to one of the plurality of control guides displayed on the display; removing the plurality of control guides in response to receiving the drag input; determining a drag characteristic value of the drag; adjusting a display characteristic of the photograph image corresponding to the one of the plurality of control guides based on the drag characteristic value; and displaying the photograph image having the adjusted display characteristic on the display.
US08922517B2
A method for detecting touch spots of a touch panel. In the detecting process, a pulse signal is input into each of a plurality of first driving-sensing electrodes, thereby simulating an R1nC curve for computing a coordinate of the touch spots, at the high impedance direction. A pulse signal is input into each of a plurality of second driving-sensing electrodes, thereby simulating an R2nC curve. The coordinate of the touch spots, at a low impedance direction can be computed by the R1nC curve and the R2nC curve.
US08922515B2
A method for the adaptation of a graphic user interface (GUI) designed for right-hand users, for the use of left-hand users, comprises the steps of: a) for the application running on a tablet, identifying the controls that make a difference from the perspective of right/left handed users; b) suggesting new coordinates for these controls; and c) changing the coordinates of said controls to adopt the content to the left/right handed users.
US08922512B2
A display apparatus includes a display having an array of pixels separated by inter-pixel gaps and a touch screen. The touch screen includes a dielectric layer located over the display having first and second electrodes each having a length direction and extending across at least a portion of the array of pixels. Each electrode includes a plurality of electrically connected micro-wires formed in a micro-pattern. The micro-patterns each have a first set of parallel micro-wires oriented at a first angle non-orthogonal to the length direction and a second set of parallel micro-wires oriented at a second angle non-orthogonal to the length direction different from the first angle. The micro-wires of the first and second sets intersect to form an array of electrically connected micro-wire intersections. At least every other micro-wire intersection on the micro-wires of the first set is located between the pixels in the inter-pixel gaps.
US08922508B2
An apparatus and method provide logic for processing information. In one implementation, a method may obtain metadata associated with corresponding values of a first characteristic and a second characteristic of a plurality of content elements. A display including a plurality of display elements may be generated, and the content elements may be assigned to corresponding ones of the display elements, based on a comparison between first and second characteristic values and first and second characteristic value ranges. A first signal may be generated to display a representation of the display to a user, and a selection of a display element may be received from the user. The method may obtain a content element assigned to the selected display element.
US08922505B2
A flexible and very thin touch screen panel is implemented by forming sensing patterns as touch sensors on a first surface of a flexible thin glass substrate and by forming a supporting film on a second surface of the glass surface. A method of fabricating a touch screen panel for securing the strength of a unit cell touch screen panel includes forming sensing patterns as touch sensors in every unit cell touch screen panel on a mother glass substrate, etching the glass substrate in the thickness direction, forming a supporting film under the glass substrate, and by cutting the glass substrate and the supporting film cell by cell using dual cutting.
US08922501B2
A capacitive sensing device comprises first electrodes in which a plurality of first sensing elements are arranged in rows and columns, and second electrodes in which a plurality of second sensing elements are arranged in rows and columns. Each of the first sensing elements has an iron cross shape, and each of the second sensing elements has a double-cross shape in which a first cross and a second cross overlap each at a shared center point and the second cross is rotated with respect to the first cross. Capacitances are formed between the first sensing elements and the second sensing elements.
US08922486B2
A method, system and apparatus for determining locations in a projected image are provided. The apparatus comprises a light sensor; a body comprising the light sensor, the body enabled to position the light sensor proximal to a screen to detect light from a projector; a communication interface for communicating with a projector system comprising at least the projector; and, a processor enabled to transmit a request to the projector system to project a structured light pattern using the projector; and when at least one pixel in the structured light pattern projected by the projector is detected at the light sensor, transmit a detection indication to the projector system to communicate detection of the at least one pixel.
US08922481B1
Methods and systems for annotating objects and/or actions are provided. An example method includes receiving a selection of a content object via an interface of a wearable computing device. The wearable computing device may include a head-mounted display (HMD). The method may also include, but is not limited to, displaying the selected content object on the HMD. Additionally, the method may include obtaining facial-muscle information while the content object is being displayed on the HMD. A facial expression may also be determined based on the facial-muscle information. According to the method, the content object may be associated with an annotation comprising an indication of the facial expression.
US08922477B2
A drive apparatus that drives a display medium that includes display and rear substrates, a disperse medium, and a particle group, includes a voltage application unit that applies first and second voltages to the display medium, in which, when a color of the particle group is displayed, the voltage application unit applies the first voltage higher than or equal to a threshold voltage necessary for the particle group to be detached from the display substrate or the rear substrate to a pixel where the particle group is moved between the substrates and applies the second voltage having a same polarity as the first voltage and is lower than the threshold voltage to the pixel where the particle group is moved between the substrates and to a pixel adjacent to the pixel where the particle group is moved between the substrates and the particle group of which is not moved.
US08922475B2
A control device for a display device includes a writing control unit that, in a case where a new writing instruction is generated for one pixel, and a writing operation for the one pixel is determined not to be in the middle of the process, stores write information in each of first storage areas corresponding to the number of times of applying a driving voltage when the display state of the pixel is changed from the first display state to the second display state, sequentially refers to the first storage areas, and applies the driving voltage to the one pixel a plurality of times based on the write information and, in a case where the writing operation is determined to be in the middle of the process for the pixel, continues to perform the writing operation and performs the writing control after the writing operation is completed.
US08922473B2
Provided is a display device capable of correctly displaying an image when surplus outputs are produced within a driver, regardless of a shifting direction of a shift register within the driver, without bringing about increase in cost and increase in consumption current. A timing controller (200) is provided with a register (22) that can store data indicating the length of a horizontal back porch when a shifting direction of a shift register within a source driver (300) is in a forward direction and data indicating the length of the horizontal back porch when the shifting direction is in an inverse direction. A source-start-pulse generation unit (21) within the timing controller (200) refers to the data within the register (22) according to the shifting direction of the shift register, and generates one of a first source start pulse signal (SSP1) for the forward direction and a second source start pulse signal (SSP2) for the inverse direction.
US08922469B2
A display panel includes a first sub-pixel electrode and a second sub-pixel electrode alternating with each other to form a horizontal electric field, a first data line transmitting a first data voltage to the first sub-pixel electrode, and a second data line transmitting a second data voltage to the second sub-pixel electrode, wherein the second sub-pixel electrode is formed to overlap the first and second data lines.
US08922468B2
A semiconductor integrated circuit including a first register which latches display data, a second register which latches the display data of the first register in accordance with a first clock, a gray scale voltage generator which outputs a plurality of gray scale voltages, a decoder which selects a gray scale voltage in accordance with the display data of the second register from the plurality of gray scale voltages, and an amplifier including a first transistor and a second transistor. A first terminal of the first transistor and a first terminal of the second transistor are connected to a first voltage line, and the gray scale voltage outputted from the decoder is supplied to one of input terminals of the first transistor and the second transistor in accordance with a control signal. A phase of the control signal is reversed at intervals of two horizontal scanning lines.
US08922467B2
A capacitance setting line is disposed at the top end of a pixel, a light emission setting line is disposed at the bottom end of the pixel, and a gate line is disposed at the center between both the lines. A selection transistor, a potential control transistor and a capacitor are disposed between the gate line and a capacitance setting line. A short-circuit transistor, a drive transistor and a drive control transistor are disposed between the gate line and the light emission setting line. With such an arrangement, the efficient arrangement of wiring contacts can be performed, and an aperture ratio can be increased.
US08922463B2
An organic light-emitting display apparatus includes: a plurality of thin film transistors (TFTs); a planarization layer covering the plurality of TFTs; a plurality of pixel electrodes formed on the planarization layer, each of the pixel electrodes being connected to a corresponding one of the plurality of TFTs using a via-hole passing through the planarization layer and having a light-emitting portion and a non-emitting portion, and each of the via-holes being located at a point farthest from each of the light-emitting portions surrounding the via-hole; a pixel defining layer formed on the planarization layer to respectively cover each of the via-holes and the non-emitting portions; organic layers, each organic layer including an emission layer and being disposed in a corresponding one of the light-emitting portions; and a counter electrode disposed on each of the organic layers.
US08922457B2
A multi-monitor display system is described having an arm adapted for supporting a plurality of monitors containing display screens. The system also includes a column for supporting the arm, a monitor controller assembly for electronically controlling images displayed on the screens, and a graphics assembly for sending signals to the monitor controller assembly to produce the images. The system is used in conjunction with a central processor located in a computer housing. The monitor controller assembly is disposed outside of the monitors and/or the graphics assembly is disposed outside the computer housing.
US08922452B1
In one embodiment, a periodic spiral antenna includes first and second arms that form interleaved spirals parallel to an x-y plane, wherein the arms have a height dimension that extends along a z direction that is perpendicular to the x-y plane, and wherein the interleaved spirals form multiple turns of the antenna, the turns being equally spaced from each other throughout the antenna.
US08922439B2
An electronic device case having an antenna pattern embedded therein includes: a radiator having an antenna pattern portion transmitting and receiving a signal and a connection terminal portion allowing the signal to be transmitted to and received from a circuit board of an electronic device; a connection portion partially forming the radiator and connecting the antenna pattern portion and the connection terminal portion to be arranged in different planes; a radiator frame manufactured by injection molding on the radiator so that the antenna pattern portion of the radiator is provided on one side of the radiator frame and the connection terminal portion is provided on the other side thereof; and a case frame covering the one side of the radiator frame on which the antenna pattern portion is provided so that the antenna pattern portion is embedded between the case frame and the radiator frame.
US08922438B2
In an antenna apparatus, on an undersurface of a metal cover, a feeding coil module is disposed. In a casing, a printed circuit board is included. A ground conductor, a feeding pin, and a ground connection conductor are disposed on the printed circuit board. When the metal cover is mounted on the casing, the feeding pin is in contact with a connection portion of the feeding coil module and is electrically connected thereto. The ground connection conductor is in contact with the metal cover and connects the metal cover to the ground conductor. The ground connection conductor is disposed at either side of a slit outside an area in which the current density of an induced current flowing through the metal cover is in a range from a maximum value to approximately 80% of the maximum value or one side of the slit in the area.
US08922435B2
An optically transparent conformal polymer antenna and a method for producing the antenna from optically transparent conductive polymers. The method includes selecting an antenna design; providing an optically transparent conductive polymer material capable of being printed using an ink jet printer device; and printing layers of the polymer in the desired antenna design pattern onto a substrate. The surface tension of the polymer solution is adjusted to allow the material to pass through a printer head for printing on a flexible substrate. The material is modified to have a higher conductivity than regular conductive polymer materials so that a suitable antenna may be formed.
US08922434B2
The invention relates to a flat screen (E) that comprises an active pixel matrix (M), an electrode that is common to said pixels (C), and a conductive strip (R) preferably in the form of a ring that is connected to said common electrode and at least partially surrounds said active matrix, characterized in that at least one slot (F) defining an antenna is formed in said conducting strip. The invention also relates to a portable apparatus that comprises: such a flat screen (E); an electronic board including a floorplan (PM) parallel to the flat screen and electrically connected to the conductive strip of the same; a means for generating and/or detecting electric radiofrequency signals; and an excitation port (P) for the slot antenna (F) installed in the flat screen, and connected to said means for generating and/or detecting electric radiofrequency signals.
US08922427B2
A system and method for detecting global positioning system (GPS) spoofing attacks includes collecting GPS readings along with inertial navigational system (INS) readings as a ground truth, and sequentially testing the GPS readings and INS readings through the use of a sequential probability ratio testing (SPRT) process.
US08922426B1
A method, computer program product, and system are provided for position estimation in a geo-location system. For example, the method can include receiving a plurality of position measurements from a respective plurality of satellites in a global navigation satellite system. From the plurality of position measurements, a position measurement with a maximum pseudo-range residual value can be selected. A position uncertainty estimate can be determined based on the position measurement with the maximum pseudo-range residual value. Further, a position estimation algorithm can receive the position uncertainty estimate as an input, thereby improving position estimation of the geo-location system.
US08922411B2
Representative implementations of devices and techniques provide configurable multi-channel analog-to-digital conversion. In a multi-channel analog-to-digital converter (ADC), one or more ADC stages may be operatively coupled to a different ADC in each of various operating modes.
US08922404B2
An aspect of one embodiment, there is provided a signal processor includes an AD-convertor outputting a conversion result and a conversion end flag, a second comparator configured to compare signal levels, a channel selection signal generation unit to select an input channel to input the AD-convertor, an direction identification flag generation unit to generate an direction identification flag, an edge signal generation unit to generate rising edges and lowering edges, an up-down counter to subject to be up or down on a count value in an output of each of edge signals, and an arithmetic processing unit to interlink the count value of the up-down counter and the conversion result of the AD-convertor to generate output data, wherein the arithmetic processing unit interpolates the count value of the up-down counter in the interlinking by using a correction value corresponding to a value of the direction identification flag in a period between an output of the edge signal and an output of the conversion end flag.
US08922402B2
A comparator offset correction device opens an open switch 205 and closes a short-circuit switch 204 in offset correction of a comparator 201. In this state, a controller 203 allows the comparator 201 to repeat, more than once, the operation of comparing reference voltages 101 input to two input terminals with each other. The filter 202 outputs a frequency signal obtained by smoothing a plurality of comparison results. Based on the frequency signal from the filter 202, the controller 203 outputs a threshold value control signal to the comparator 201 so that the ratio of a high-level voltage to a low-level voltage in the results of the comparison in the comparator 201 is 50%. Thus, even when a current which will be input may differ from a current which is currently input due to, for example, the influence of noise, the threshold value offset amount is normally corrected.
US08922400B2
A method is disclosed for compressing a sequence of initial digital values into a compressed sequence of compressed values, intending to restore these values into a decompressed sequence of decompressed values. For a first initial value of the sequence, the compressed value of the first initial value is equal to the first initial value and the decompressed value of the compressed value of the first initial value is equal to the first initial value. For each current initial value, the method includes calculating the difference between the current initial value and the decompressed value of the initial value immediately preceding the current value, calculating a compressed value of the difference using a complementary compression function, calculating the decompressed value corresponding to said current initial value, applying the three preceding steps to the immediately following value if there is one, and constituting the compressed sequence of the compressed values, each corresponding to a respective initial value.
US08922395B2
A vehicle wheel is detected by emitting a measuring beam, recording frequencies of a reflected measuring beam over time as a received signal, and detecting a change in the received signal as a wheel. The vehicle comprises an onboard unit that stores information that indicates the vehicle length at least indirectly. The information is read from the onboard unit by a radio communication and the speed of the vehicle is measured. The duration of the passage of the vehicle passing a detector unit is computed based on this information and the speed. A time window in the received signal is determined that shows an approximately constant change of the received signal over the aforementioned duration. A spurious signal component is determined in a segment of the received signal that immediately precedes the time window. The received signal in the time window is compensated by the spurious signal component.
US08922381B2
The present invention relates to a gas-detecting unit for detection of CO2 and an alarming unit, said gas-detecting unit and said alarming unit being integrated to comprise one device, and wherein said device is adapted to withstand harsh environments and cleaning of the device.
US08922378B2
A dispensing and accountability system for assuring washing of a person's hands includes at least one passive infrared detector adapted to detect the presence of the person having a requirement of washing the hands. Further, the dispensing and accountability system includes a controller having a scalable processor architecture operatively coupled to each passive infrared detector of the at least one passive infrared detector. Furthermore, the dispensing and accountability system includes at least one audio signal unit operatively coupled to the controller. The at least one audio signal unit is adapted to generate an audio signal to remind the person to wash the hands. In addition, the dispensing and accountability system includes at least one dispensing unit operatively coupled to the controller. Because of the scalable processor architecture of the controller, the system may be expanded or contracted depending on the needs of the institution using it.
US08922373B2
A device and method for subcutaneously implanting an identification chip into a domestic animal, the identification chip becoming relatively immobile once implanted.
US08922369B2
An electronic faucet has a controller configured to selectively open and close a valve to provide fluid flow through the valve and a passageway of the faucet. The controller is programmed to selectively open and close the valve to generate a fluid flow pattern through the passageway to provide an indication to a user of a condition of the electronic faucet.
US08922359B2
Provided are an apparatus and method for transmitting information on a location of a tire with information on pressure of the tire. The present disclosure provides logic for calculating rotation angles among a plurality of magnetic field samples obtained from a geomagnetic sensor, calculating rotational directions, and determining the left/right locations of the tire on the basis of the number of times of accumulation of the rotational directions.
US08922358B2
A display apparatus includes a display plane and a control unit. The display plane configured to display a first display portion that shows a locomotion region in the first locomotion mode in a display region based on the output request and a future locomotion distance of the vehicle and a second display portion that shows a locomotion region in the second locomotion mode next to the first display portion in the display region. The control unit configured to control an image displayed in the display plane. The control unit changes a border between the first display portion and the second display portion based on the future locomotion distance in accordance with an estimation result of displacement of a switching point between the first locomotion mode and the second locomotion mode.
US08922356B2
An entryway control and monitoring system includes a remote controller to open and close an entryway and a telematics unit. The remote controller and the telematics unit are each disposed in a vehicle. The system further includes any of i) a vehicle bus that operatively connects the remote controller to the telematics unit, or ii) respective short range wireless connection units disposed in each of the remote controller and the telematics unit that selectively operatively connect the remote controller and the telematics unit. Computer readable code embedded on a non-transitory, tangible computer readable medium is executable by a processor of the telematics unit to at least one of control or monitor an operation of the remote controller.
US08922354B2
An external haptic generator for creating haptic feedback in portable electronic devices and more particularly, an external haptic generator in a vehicle providing a secure mount and creating haptic feedback in portable electronic devices that do not include haptic feedback generators.
US08922350B2
Techniques are presented for adaptively increasing power delivered to an RF tag. In one embodiment, a tag reader uses multiple transmit antennas to increase the power delivered to an RF tag without increasing the transmission power. The tag reader may perform transmit diversity (or a related antenna diversity schema) to ensure that transmitted signals from the multiple transmit antennas constructively interfere at the location of the RF tag. The tag reader may transmit a pilot signal and measure a phase associated with a received signal from the RF tag. The tag reader may then use the phase to determine a phase shift for each of the plurality of antennas. The phase shift may then be applied to any subsequent signals transmitted by the antennas to ensure that the signals interfere at the RF tag's location.
US08922348B2
A device, such as a radio frequency identification (RFID) device, includes a receiver to receive interrogation signals transmitted over a first frequency band from an RFID reader device. The device includes a transmitter to transmit a notification signal over a second frequency band to a computing device (e.g., a mobile phone) in response to receiving a particular interrogation signal at the receiver. The computing device is distinct from the RFID reader device and the second frequency band is distinct from the first frequency band. The notification signal includes data indicating that the particular interrogation signal was received at the device.
US08922346B2
A container group includes a plurality of containers arranged in three dimensions. A power signal is transmitted to a first subset of the containers facing a power antenna. A data signal is transmitted to a second subset of the containers facing a link antenna. The power and link antennas face non-parallel sides of the container. The containers pass power back from the first subset. The power transmitted to each container runs an RFID repeater that passes data back from the second subset. In the container group is a masked container with an RFID tag that communicates with the RFID repeater on the next container closer to the link antenna.
US08922341B2
A method of authentication of a terminal generating a magnetic field by a transponder including an oscillating circuit from which a D.C. voltage is generated, wherein at least one quantity depending on the coupling between the transponder and the terminal is compared with at least one reference value.
US08922338B2
A method of evaluation, by an electromagnetic transponder in the field of a terminal generating a magnetic field, of power that can be extracted from this field, including the steps of: evaluating the current coupling between the transponder and the terminal; and deducing therefrom information relative to the power available in this coupling position.
US08922337B2
A device is provided with a reader/writer that wirelessly communicates with an RFID module in a con-contact manner that resides within a wireless communications area of the device, and an optical transmitter transmitting a signal receivable by the RFID module in an area in the vicinity of the device within the wireless communication area of the device, the signal receivable area being narrower than the wireless communication area. The device determines whether an ID of an RFID currently performing wireless-communication is stored in its storage as an authorized ID, or not. The optical transmitter initiates signal transmission on the condition of the determination that the corresponding ID is stored. Upon receipt of the signal from the optical transmitter by a photoreceptor, the RFID module wirelessly transmits an authentication request signal to the device. Having received the authentication request signal from the RFID module, the device authenticates the ID and authorizes the use of the device based on the establishment of the authentication. Thus, the use of the device by unspecified users can be excluded at a high ratio without impairing the convenience of users of the device.
US08922335B2
A weapons container for releasing a defense weapon includes a cabinet, a cabinet door, and an interior securing the defense weapon. Upon detection of a fingerprint input by a biometric sensor, a surveillance camera captures video and an audio intercom provides communication with a central command center. A recording system saves the video and audio to a storage database. A delay release lock secures the defense weapon for an amount of time and releases the defense weapon depending on a signal from the central command center. A communications system is connected over a network to the central command center, a local authority, and an emergency responder. The communications system notifies the local authority or the emergency responder upon detection of the fingerprint input and streams the video and audio to the central command center and at least one of the local authority and the emergency responder over the Internet.
US08922326B2
A laminated electronic component includes a first magnetic material portion, a low-magnetic-permeability portion laminated on the first magnetic material portion, a second magnetic material portion laminated on the low-magnetic-permeability portion, at least one annular or spiral coil disposed within the low-magnetic-permeability portion, and a plurality of columnar magnetic material portions disposed within the low-magnetic-permeability portion so as to extend through inside of the coil and connecting the first magnetic material portion to the second magnetic material portion.
US08922324B2
An ignition coil for internal combustion engine includes: a center core disposed on an inner side of a primary coil and a secondary coil and a side core disposed on an outer side of the primary and secondary coils whose one end face abuts on one end face of the center core and the other end face abuts on the other end face of the center core via a magnet. The side core is formed of a plurality of side core portions obtained by dividing laminated magnetic steel plates at different positions in a longitudinal direction thereof and has a superimposed portion in which the magnetic steel plates of the adjacent side core portions mutually superimpose between the different positions in the longitudinal direction. It thus becomes possible to provide an ignition coil for internal combustion engine capable of suppressing an increase of magnetic circuit resistance markedly without deteriorating assembly workability.
US08922321B2
In a power and data transmission method which can transmit power and information (data) simultaneously and contactlessly, and an apparatus therefor, a pair of coil units are magnetically coupled to each other. Each of the coil units has: a power transmission coil configured by a coil which is wound in a plane, and a magnetic shield member which is placed on a rear surface of the coil; and an information transmission coil configured by a coil which is wound in a plane, and a magnetic shield member which is placed on a rear surface of the coil, the coil diameter of the information transmission coil is made different from that of the power transmission coil, and the information transmission coil and the power transmission coil are stacked. Data are transmitted while power is transmitted.
US08922320B2
The embodiment relates to a transformer. A transformer according to an aspect includes: a first coil assembly including a first core, a first bobbin coupled to the first core, and a first coil provided on the first bobbin; and a second coil assembly coupled to the first coil assembly, and including a second core, a second bobbin coupled to the second core, and a second coil provided on the second bobbin.
US08922318B1
A transformer includes a bobbin, a winding coil assembly, a magnetic core assembly, and a bracket. The bobbin includes a supporting part and a winding part. The winding coil assembly includes a primary winding coil and a secondary winding coil. The secondary winding coil has an outlet part. The primary winding coil and the secondary winding coil are wound around the winding part of the bobbin. The magnetic core assembly includes a first magnetic core and a second magnetic core. The bobbin is arranged between the first magnetic core and the second magnetic core. The bracket is connected with the supporting part of the bobbin for assisting in positioning the outlet part of the secondary winding coil.
US08922316B2
The device and manufacturing method for a Direct Current (DC) filter inductor are disclosed. The device comprises a magnetic core, at least one first winding and at least one second winding. The magnetic core has at least one air gap. The first winding and the second winding are connected to each other in parallel that having a mutual inductance, and are wrapped around the magnetic core respectively. A difference between a first inductance of the first winding and the mutual inductance is smaller than a difference between a second inductance of the second winding and the mutual inductance. A Direct Current (DC) resistance of the first winding is larger than a DC resistance of the second winding. The first winding is closer to the air gap compared to the second winding.
US08922313B2
An induction device includes a casing, a coil retainer, a coil that is disposed in the casing and retained to the coil retainer and a core that is disposed in the casing. The coil extends spirally around the core. The core and the coil retainer are fixed to the casing separately.
US08922309B1
An inductive device includes an inductor having an inductance associated therewith, and a tuning ring disposed around the inductor. The tuning ring has an inductance associated therewith, wherein the tuning ring is coupled to the inductor to establish a mutual inductance between the tuning ring and the inductor. The inductance of the inductor, the inductance of the tuning ring, and the mutual inductance between the tuning ring and the inductor contribute to a total inductance of the inductive device. The tuning ring is configurable, and is selectively configured to achieve a certain value for the mutual inductance, and a certain value for the inductance of the tuning ring, without changing a footprint of the tuning ring.
US08922306B2
A system can include a first radio frequency (RF) port, a second RF port electrically coupled with the first RF port, a direct current (DC) port, and a bias tee incorporated into a substrate. The bias tee can include multiple capacitors that are each integrated as a catch pad with a layer of the substrate. The bias tee can also include an inductor at least partially integrated with a layer of the substrate.
US08922304B2
A laminated electronic device comprises two or more wiring layers including a first wiring layer and a second wiring layer, an insulating layer interposed between the first wiring layer and second wiring layer, and a through conductor extending through the insulating layer for electrically connecting a first conductor disposed on the first wiring layer to a second conductor disposed on the second wiring layer. The through conductor includes divergent sections at both ends, which have a diameter gradually increased toward the first conductor or second conductor.
US08922302B2
An acoustic resonator structure comprises a substrate having a trench, a conductive pattern formed in the trench, a pillar formed within the trench, and an acoustic resonator supported at a central location by the pillar and suspended over the trench.
US08922301B1
A high-Q factor resonator comprises a solenoid having an embedded capacitor assembled in a machineable high-frequency dielectric printed circuit board (“PCB”), or other substrate. The solenoid comprises a plurality of surface conductors positioned on upper and lower surfaces of the PCB. The solenoid further comprises a plurality of conductive vias extending through the PCB between the surface conductors, and at least two aligned vias are separated by a capacitive gap. The device can therefore be described as a coupled circuit having a 1.5 or more turn inductor with an embedded capacitor along the length of the conductive path. Accordingly, a resonator having a high-Q factor is provided which is relatively inexpensive and easy to fabricate.
US08922296B2
An amplification device with reduced bulk including at least one plate parallel to a plane XY and at least two amplifier modules mounted on the plate, each amplifier module including an amplifier element, an input connection waveguide, and an output connection waveguide oriented in one and the same direction X corresponding to a direction of longitudinal propagation, the amplifier element having an input and output axis oriented in a direction Y perpendicular to the direction of propagation X, wherein the input connection waveguides of the amplifier modules are distinct, have different lengths and are mounted in parallel to one another, the output connection waveguides of the amplifier modules are distinct, have different lengths and are mounted in parallel to one another, and the sum of the lengths of the input and output guides of one and the same amplifier module is identical for each amplifier module.
US08922283B2
A wristwatch, which comprises an atomic oscillator comprising a system for detecting the beat frequencies obtained by the Raman effect.
US08922282B2
A radio frequency (RF) power amplifier includes a low impedance pre-driver driving the input of a common-source output amplifier stage. The preamplifier includes a first transistor that has a first terminal coupled to a preamplifier RF input node, a second terminal coupled to a preamplifier RF output node, and a third terminal coupled to a supply voltage node. A first inductor is coupled between the RF output node and a bias voltage node. A voltage difference between respective first and second voltages on the RF input node and the RF output node that are substantially in phase, determines current through the first transistor.
US08922281B2
In a power amplifier, in response to a power mode signal at a predetermined level, a first switch circuit supplies a signal to first and second amplifier devices that perform parallel operations. In response to the power mode signal at another level, the first switch circuit supplies a signal to the first amplifier device and stops supplying the signal to the second amplifier device such that the first amplifier device performs a standalone operation. One end of an impedance adjusting circuit is connected to a connection node between the outputs of the first and second amplifier devices, the other end of the impedance adjusting circuit is connected to one end of a second switch circuit, and the other end of the second switch circuit is connected to a ground potential. The impedance adjusting circuit includes a reactance element.
US08922279B2
This invention provides a voltage controlled variable gain amplifier circuit that varies its gain linearly and continuously against a gain control voltage VC. The voltage controlled variable gain amplifier circuit includes a first differential amplifier, a second differential amplifier, a gain control voltage/current conversion circuit and a reference current generation circuit. The first differential amplifier and the second differential amplifier are connected in series. The gain control voltage/current conversion circuit converts the gain control voltage VC into a gain control current IC that varies linearly against the gain control voltage VC. Drain currents Id1 and Id2 of first and second differential input transistors vary linearly against the gain control current IC.
US08922275B2
A common mode bias circuit may include a weak common mode bias generator and a common mode bias capacitance. During a first state of the common mode bias circuit, the weak common mode bias generator may be coupled to the common mode bias capacitance and may impart to them a predefined common mode signal level. During a second state of the common mode bias circuit, the common mode bias capacitance may be coupled to differential inputs of an amplifier in a manner that establishes an input common mode level for the amplifier.
US08922265B1
Disclosed is a noise current compensation circuit. The circuit is provided with two input and output terminals A and B, and two control terminals CON and CONF. The control terminals control a work mode (work state and pre-charge state) of the compensation circuit. The compensation circuit consists of 7 PMOS transistors and 8 NMOS transistors. In the normal work state, by detecting changes of potential change rate of two signal lines in an original circuit, the noise current compensation circuit automatically enables one end of the original circuit that discharges slowly to discharge a signal more slowly, and enables one end of the original circuit that discharges rapidly to discharge a signal more rapidly, thus eliminating the influence of the noise current on the circuit and providing assistance for correct identification of subsequent circuit signals. The current compensation circuit can be used for an SRAM bit line leakage current compensation circuit, because the existence of a large leakage current on the SRAM bit line leads to the decreasing of a voltage difference between two ends of the bit line, resulting in that a subsequent circuit cannot correctly identify a signal.
US08922262B2
A time sequencing circuit for a power supply unit to ensure the correct sequencing of system voltages for a computer from a power supply unit includes first to ninth resistors, first to fifth electronic switches, and a capacitor. Each of the first to fifth electronic switches includes first to third terminals. When the power supply unit outputs all required voltages, the power supply unit outputs a high-voltage level indicating power good and the computer can start up. If any one of the required voltages is not being outputted, the power supply unit outputs a low-voltage level good signal until any non-output of voltage is cured.
US08922257B2
A semiconductor device includes an information generation circuit configured to generate first information, an information multiplexing circuit configured to multiplex the first information and second information, and an information driving circuit configured to drive an output pad in response to an output signal of the information multiplexing circuit.
US08922245B2
In an asymmetrically terminated communication system, the power consumed to transmit a particular bit value is adjusted based on whether the bit being output is the second, third, fourth, etc. consecutive bit with the same value after a transition to output the particular bit value. The adjustment of the power consumed to transmit the two or more consecutive bits with the same value may be made by adjusting the driver strength during the second, or subsequent, consecutive bits with the same value. The adjustment of the power consumed is performed on the bit value that consumes the most DC power and the other value is typically not adjusted.
US08922243B2
A die-stacked memory device incorporates a reconfigurable logic device to provide implementation flexibility in performing various data manipulation operations and other memory operations that use data stored in the die-stacked memory device or that result in data that is to be stored in the die-stacked memory device. One or more configuration files representing corresponding logic configurations for the reconfigurable logic device can be stored in a configuration store at the die-stacked memory device, and a configuration controller can program a reconfigurable logic fabric of the reconfigurable logic device using a selected one of the configuration files. Due to the integration of the logic dies and the memory dies, the reconfigurable logic device can perform various data manipulation operations with higher bandwidth and lower latency and power consumption compared to devices external to the die-stacked memory device.
US08922236B2
A potential of a gate of the transistor of the memory cell is held at a predetermined potential VGM which is between a potential VGL used in normal holding and a threshold of the transistor Vth. When the potential is held for a predetermined period, the memory cell becomes in a similar state in which the memory cell is held at a potential VGL in 10 years. A memory cell, which does not hold data sufficiently at this time, can be judged not to hold data for 10 years in normal use.
US08922235B2
A method for testing a semiconductor device includes testing the semiconductor device in a plurality of operation modes sequentially, and programming the semiconductor device to operate in at least one of the operation modes when the semiconductor device passes the testing.
US08922229B2
A method is disclosed for the measurement of a power device in a prober, which serves the examination and testing of such components. In the process, a power device is held by a chuck, and at least one electric probe is held by a probe holder, and optionally, the power device or the probe is positioned each relative to the other using a positioning device with an electrical drive, and contacts the power device. At the same time, an electrical connection remains between the probe to a signal unit with which a power signal is sent out or received, is blocked and only unblocked when it is determined that the contact between probe 26 and contact area is established.
US08922228B2
A control method of measuring an internal resistance of an electric power accumulator 19 of a hybrid-type construction machine 100 comprises: a pattern generating step of generating an internal resistance measurement pattern in a non-operation status in which there is no operation for the hybrid-type construction machine from an operator; an output changing step of changing an output of a generator 12 based on the pattern generated in the pattern generating step in the non-operation status; an electric current, etc., detecting step of detecting electric current values and voltage values in the electric power accumulator 19 before and after the change of the output of the generator 12 in the output changing step; and an internal resistance measuring step of measuring the internal resistance of the electric power accumulator 19 based on the electric current values and the voltage values detected before and after the change of the output of the generator 12 in the electric current, etc., detecting step.
US08922217B2
A robust battery state-of-charge observer determines a state-of-charge as function of an open circuit voltage by taking into account battery parameter uncertainties, which are due to battery age, variation, and operating conditions, (e.g. temperature and SOC level). Each of the time-varying battery parameter values are bounded. By utilizing the parameter variation bounds in the design process and constantly minimizing the estimation error covariance matrix, the robust observer achieves enhanced robustness to the variations of battery age, variation, and operating conditions such as temperature and SOC level.
US08922205B2
A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.
US08922192B2
A method for multiphase electrical power phase identification by a monitoring component includes: receiving a request for the power phase identification for a given power component phase connection from a power component; in response, sending signal characteristics to the power component; monitoring power signals on distribution panel phase connections; determining that the signal characteristics are found on a given distribution panel phase connection; and in response, sending an identifier of the given distribution panel phase connection to the power component. In receiving the signal characteristics, the power component: selects the given power component phase connection; applies a signal with the signal characteristic on the given power component phase connection; receives an identifier of the given distribution panel phase connection from the monitoring component; and associates the identifier with the given power component phase connection.
US08922190B2
A band gap reference voltage generator has first and second current conduction paths between a first node and a second node. The first current conduction path has first resistive elements in series with a first forward-biased PN junction element. A tap is connected selectively to the first resistive elements through switches that are controllable to select a voltage divider ratio at the tap. The second current conduction path includes a second resistive element in series with a second PN junction element of greater current density than the first PN junction. A voltage error amplifier has inputs connected to the tap and the second PN junction element, and an output for providing a thermally compensated output voltage VREF. A feedback path applies the output voltage VREF through a third resistive element to the first node.
US08922182B2
A DC converter circuit having high reliability is provided. The DC converter circuit includes: an inductor configured to generate electromotive force in accordance with a change in flowing current; a transistor including a gate, a source, and a drain, which is configured to control generation of the electromotive force in the inductor by being on or off; a rectifier in a conducting state when the transistor is off; and a control circuit configured to control on and off of the transistor. The transistor includes an oxide semiconductor layer whose hydrogen concentration is less than or equal to 5×1019 atoms/cm3 as a channel formation layer.
US08922176B2
An apparatus is configured to provide a voltage rising at the output with a programmable slew rate. The apparatus comprises a ramp-up control circuit module for supplying an increasing output voltage that is output to a load circuit. The ramp-up control circuit comprises an amplifier that receives the output of a plurality of selectable mirrored current sources that build up voltage across a capacitor for programming a selected linear slew rate for the increasing output voltage. The apparatus further comprises a glitch filter circuit for stabilizing the increasing output voltage so as to minimize glitches, including current and voltage stress, in the output voltage.
US08922172B2
A battery charger is disclosed that is configured to be connected to an external battery by way of external battery cables. In accordance with an important aspect of the invention, the battery charger is configured with automatic voltage detection which automatically determines the nominal voltage of the battery connected to its battery charger terminals and charges the battery as a function of the detected nominal voltage irrespective of the nominal voltage selected by a user. Various safeguards are built into the battery charger to avoid overcharging a battery. For battery chargers with user selectable nominal battery voltage charging modes, battery charger is configured to over-ride a user selected battery voltage mode if it detects that the battery connected to the battery charger terminals is different than the user selected charging mode.
US08922167B2
Rechargeable battery systems and rechargeable battery system operational methods are described. According to one aspect, a rechargeable battery system includes a plurality of rechargeable battery cells coupled between a plurality of terminals and shunting circuitry configured to shunt charging electrical energy around respective ones of the rechargeable battery cells during charging of the rechargeable battery cells from substantially discharged states of charge of the rechargeable battery cells to substantially charged states of charge of the rechargeable battery cells.
US08922158B2
A portable electronic device chargeable via at least one speaker port is provided. The portable electronic device comprises a housing containing: a processing unit, a least one speaker for playing audio signals; a power pack for powering the portable electronic device, including the processing unit; and a charging circuit electrically connected to the power pack for charging the power pack from an external power source. The portable electronic device further comprises at least one speaker port for enabling sound from the at least one speaker to exit the housing, the at least one speaker port enabled to convey power from the external power source to the charging circuit such that the power pack is chargeable via the at least one speaker port.
US08922157B2
The electric battery for vehicles includes accumulation elements of electric charge connectable to the power supply line of a vehicle and electronic processing elements suitable for managing and/or controlling the use and the state of the battery.
US08922156B2
Disclosed herein is solar power-generating equipment, including: a solar cell; a secondary battery; an electric power outputting portion; a display portion configured to display thereon information about an electric-generating capacity of the solar cell, and information about a state of charge of the secondary battery; and a control portion configured to cause the display portion to display thereon the information about the electric-generating capacity of the solar cell only for a predetermined time length, and cause the display portion to display thereon the information about the state of charge of the secondary battery only for a predetermined time length.
US08922147B2
A quiet motor control system is described. This system digitally determines modulated voltages applied to motor phases in a manner that compensates for winding torque distortions, which reduces acoustic emissions.
US08922141B2
The invention provides a reciprocating electric tool (1) having a brushless motor (3), a plunger (52), and control means (6). The plunger (52) is driven by the brushless motor and reciprocating between two dead centers. A end bit (7) is mounted to one end of the plunger in a reciprocating direction. The control means (6) controls a rotational speed of the brushless motor based on a position of the plunger.
US08922131B1
A light fixture includes a housing, a plurality of parallel lamps, and a ballast. The ballast provides power to each lamp of the plurality of parallel lamps. A series resonant inverter in the ballast provides AC power to an output of the series resonant inverter from a DC power source having a power rail and a ground. The series resonant inverter includes a resonant inductor, a first clamping diode, and a second clamping diode. The resonant inductor has a first portion and a second portion and a connection point between the first portion and the second portion. The first clamping diode is connected between the connection point and the power rail. The second clamping diode is connected between the connection point and the ground. The first and second clamping diodes ensure soft switching of a half-bridge inverter switch pair of the series resonant inverter.
US08922130B2
In a conventional example, even if a duty cycle of the burst dimming is changed during an OFF-period of a switching element, current flowing to an LED is maintained constant. On the other hand, in the present embodiment, an accumulated value of ON-periods of a switching element is increased or decreased so as to be linked to a minimum variation width for a duty cycle (a dimming level) of a dimming signal, regardless of a timing of when the duty cycle is changed. Therefore, a lighting system (an LED drive device) according to the present embodiment can change smoothly a light output of a solid-state light-emitting element (a light source) with respect to a change in a duty cycle of the burst dimming while preventing the switching frequency from increasing.
US08922126B2
A lighting device includes a DC/DC power converter, a controller/processor electrically connected to the DC/DC power converter, a light emitting diode (LED) current control circuit communicably coupled to the controller/processor and electrically connected to the DC/DC power converter, and two or more LEDs comprising at least a first color LED and a second color LED electrically connected to the LED current control circuit. The LED current control circuit provides an on/off signal having a cycle time to each LED in response to one or more control signals received from the controller/processor such that the two or more LEDs produce a blended light having a specified color based on how long each LED is turned ON and/or OFF during the cycle time.
US08922122B2
The present disclosure provides for various advantageous methods and apparatus of controlling electron emission. One of the broader forms of the present disclosure involves an electron emission element, comprising an electron emitter including an electron emission region disposed between a gate electrode and a cathode electrode. An anode is disposed above the electron emission region, and a voltage set is disposed above the anode. A first voltage applied between the gate electrode and the cathode electrode controls a quantity of electrons generated from the electron emission region. A second voltage applied to the anode extracts generated electrons. A third voltage applied to the voltage set controls a direction of electrons extracted through the anode.
US08922114B2
A white light-emitting device includes a first electrode; a first barrier rib on the first electrode including a first color conversion material; a second barrier rib on the first electrode spaced apart from the first barrier rib and including a second color conversion material; a third color layer between the first barrier rib and the second barrier rib that emits white light when light emitted from the third color layer is combined with light emitted from first color conversion material and light emitted from the second color conversion material; and a second electrode on the first barrier rib, the second barrier rib, and the third color layer.
US08922102B2
A composite ignition device includes a positive electrode having a tip formed thereon that is bonded to a first insulator to form a firing cone assembly. A second insulator having a negative capacitive element embedded therein is attached to the firing cone assembly. A positive capacitive element is disposed in the second insulator and is separated from the negative capacitive element by the second insulator. The positive capacitive element is coupled to the positive electrode. The positive and negative capacitive elements form a capacitor. A resistor is coupled to the positive capacitive element. An electrical connector is coupled to the resistor and attached to the second insulator. A shell including a negative electrode having a tip is attached to the second insulator and the firing core assembly and coupled to the negative capacitive element. The negative electrode tip is spaced apart from the positive electrode tip.
US08922089B2
In a direct-current motor armature 3 corresponding to an 8-pole-10-slot-20-segment or 12-pole-15-slot-30-segment, a connection wire 25 for short-circuiting segments 14 having the same degree of electric potential is provided to a commutator, a coil 12 is connected electrically to the segments 14 having a potential difference that is equal to a potential difference between the adjacent segments 14, and the coil 12 is wound around teeth 9 to form armature coils 7. Accordingly, an armature for use in a direct-current motor, a direct-current motor, and a method for winding wires around the armature of the direct-current motor for enabling down-sized direct-current motors having extended product life and enhanced performance can be provided.
US08922088B2
Provided is a rotor for a dynamoelectric machine. The rotor includes winding elements arranged in axially extending grooves of a rotor body, a winding head arranged axially adjacent to the rotor body, and a winding head carrier, connected to the winding head by means of tension bolts, all arranged in such a way that reliable securing of the winding head against radial expansion due to centrifugal forces is ensured, while resulting in a compact and cost-effective configuration as well as sufficient cooling.
US08922069B2
Provided is a linear motor actuator capable of oscillating a mover without using mechanical resilience of an elastic body. A first permanent magnet 3a and a second permanent magnet 3b magnetized in an axis direction are disposed in a mover 4 in the direction of the axis. A first coil 1a and a second coil 1b are disposed in a stator 2 so as to surround the first permanent magnet 3a and the second permanent magnet 3b, respectively. Alternating currents having the same phase are applied to the first coil 1a and the second coil 1b such that the phase of thrust generated in the first coil 1a and that of thrust generated in the second coil 1b are shifted from each other. At this moment, a center-to-center pitch LC1 between the center of the first coil 1a and that of the second coil 1b in the axis direction differs from a pole-to-pole pitch LM1 of the mover.
US08922064B2
A wireless power feeder feeds power from a feeding coil to a receiving coil by wireless using a magnetic field resonance phenomenon. The feeding coil is constructed in a rotatable manner. A power transmission control circuit that supplies AC power to the feeding coil so as to make the feeding coil feed the AC power to the receiving coil. The feeding coil is constructed such that the magnetic characteristics thereof in the circumferential direction are made non-uniform. Concretely, a magnetic body is installed at only a part of the circumference of the feeding coil to make the magnetic characteristics of the feeding coil in the circumferential direction non-uniform.
US08922058B2
A switch mode power supply controller provides power to a pair of light sources. The controller includes a low voltage programmable current source and adjusting elements for independently adjusting the current to the LED light sources. The controller also includes a first communication port for receiving a communication from an external device, such as a dimmer, or from another power supply controller; and a second communication port for sending a communication to a third power supply controller. These ports provide an upstream and downstream communication capability through a chain of controllers so that input from a device can be communicated upstream and downstream.
US08922054B2
A power distribution system includes a plurality of load side power converters configured in a modular stacked DC (MSDC) converter architecture. Each load side converter includes a respective energy storage device such that together the plurality of energy storage devices provides a distributed subsea energy storage system configured to maintain a common subsea busbar voltage substantially constant during intermittent load voltage excursions.
US08922047B2
A horizontal-axis wind turbine includes a rotor having a hub and blades rotatable by wind; a nacelle assembly for rotatably supporting the rotor through a main shaft, the main shaft being connected to the rotor; a tower for rotatably supporting the nacelle assembly; a dynamo placed near to a location at which the tower is built up; a rotatable vertical shaft orthogonally disposed to the main shaft inside the tower for transferring a rotating force of the main shaft to the dynamo; and a repulsive torque-balancing mechanism for transferring a rotating force of the nacelle assembly, the rotating force of the nacelle assembly being derived from repulsive torque due to a load of the dynamo, to the vertical shaft in a direction in which the repulsive torque is balanced.
US08922045B2
There is provided a power generating system to recharge the batteries of a boat as the boat moves under power through a body of water. The electrical generating system has a relatively large water wheel connected to a boat. As the boat moves through the water, the water wheel turns producing energy and, through a series of pulleys and wheel gears and then to a generator or alternator and then the electrical energy is passed to a battery. The water wheel may be mounted on the stern of the boat, or to the side of the boat, or in a cut out portion in the bottom of the boat.
US08922043B1
A time variant droop-based inertial control method of a wind generator includes the steps of acquiring a nominal frequency value and a system frequency value of a power system; calculating a difference between the system frequency value and the nominal frequency value; calculating a rate of change of the system frequency; acquiring a droop coefficient Rvariant using the rate of change of the system frequency; and controlling the wind generator based on the difference between the system frequency value and the nominal frequency value and the droop coefficient Rvariant.
US08922041B1
A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.
US08922040B2
A wind energy plant comprising a rotor having blades and a generator driven by said rotor for generating electric energy. The pitch of the blades can be adjusted and a pitch system for adjusting the pitch angle of the blades is provided, which is supplied by a hub power source. An additional electric load is provided on the hub. A pitch power control device is provided which dynamically distributes the power of the hub power source between the pitch system and the additional electric load and further acts on the pitch system such that its power consumption during high-load operation is reduced. Thus, the power consumption of the pitch system during high-load operation can be reduced and additional power provided for operating the additional load. Even large additional loads, such as a blade heater, can be operated in this way, without having to boost the hub power source.
US08922037B2
A wind power installation is provided having a pylon made up of a plurality of pylon segments, a generator arranged in the region of the head of the pylon, a power module arranged in the region of the pylon base or separate from the pylon, busbar elements which are installed segmented in the associated pylon segments for current transfer from the generator to the power module, and connecting elements for connecting busbar elements which are installed in adjacent pylon segments. Clamping holders may be mounted to the inside wall in the end region, that is the lower end region in the erected condition, of the pylon segments with end portions of the busbar elements clamped or inserted into the clamping holders.
US08922035B2
In a leisure vehicle, the load applied to an engine is controlled so that a driving property and an output are improved. The leisure vehicle has a generator 30 to be driven by the engine for generating power, and a power generation control device 42 for controlling the generator 30, wherein the power generation control device 42 increases or decreases a power generation amount of the generator 30 under a predetermined condition regarding the power generation amount of the generator 30 to be increased or decreased in accordance with an increase or a decrease in engine speed.
US08922033B2
A power generation system is provided having a genset comprising an engine mechanically coupled to a generator. The genset is configured to generate electrical power. A ventilation system has a ventilation inlet and a ventilation outlet, and the ventilation system is configured for cooling at least one of the engine and the generator. Both the ventilation inlet and ventilation outlet have an adjustable shutter configured for adjusting a flow volume of a coolant medium through the ventilation system.
US08922031B2
A thermosetting encapsulation adhesive sheet which is used for encapsulating a chip type device (1) having connection electrodes (bumps) (3) and mounted on a wiring circuit board (2). The thermosetting encapsulation adhesive sheet is composed of an epoxy resin composition having a viscosity of 5×104 to 5×106 Pa·s as measured at a temperature of 80 to 120° C. before thermosetting thereof. The thermosetting encapsulation adhesive sheet makes it possible to conveniently encapsulate a hollow device with an improved yield.
US08922024B2
Semiconductor packages including molding layer and methods of fabricating the same are provided. The method may include forming a bare package including a semiconductor chip on a package substrate and forming a molding layer surrounding the semiconductor chip on the package substrate while contacting an upper surface of the molding layer with a lower surface of a release film. The lower surface of the release film and the upper surface of the molding layer comprising uneven surfaces and the molding layer may expose an upper surface of the semiconductor chip.
US08922022B2
A liner-to-liner direct contact is formed between an upper metallic liner of a conductive via and a lower metallic liner of a metal line below. The liner-to-liner contact impedes abrupt electromigration failures and enhances electromigration resistance of the metal interconnect structure. The at least one dielectric material portion may include a plurality of dielectric material portions arranged to insure direct contact of between the upper metallic liner and the lower metallic liner. Alternatively, the at least one dielectric material portion may comprise a single dielectric portion of which the area has a sufficient lateral overlap with the area of the conductive via to insure that a liner-to-liner direct contact is formed within the range of allowed lithographic overlay variations.
US08922016B2
A method for producing a composite material, associated composite material and associated semiconductor circuit arrangements is disclosed. A plurality of first electrically conducting material particles are applied to a carrier substrate and a second electrically conducting material is galvanically deposited on a surface of the first material particles in such a way that the second material mechanically and electrically bonds the plurality of first material particles to one another.
US08922015B2
Provided is a semiconductor device characterized by that first to fourth semiconductor chips are mounted on first to fourth electrodes formed by plating, respectively; the surface of the first semiconductor chip and the upper surface of a fifth electrode, the surface of the second semiconductor chip and the upper surface of the first electrode, the surface of the third semiconductor chip and the upper surface of the fourth electrode, the surface of the fourth semiconductor chip and the upper surface of the fifth electrode, and the upper surface of the second electrode and the upper surface of the third electrode are coupled to each other by first to fifth conductive members, respectively; and the back surfaces of the first to fifth electrodes are exposed from a resin molding. The invention makes it possible to reduce the size and the thickness of a semiconductor device configuring a diode bridge circuit.
US08922014B2
There are disclosed herein various implementations of improved wafer level semiconductor packages. One exemplary implementation comprises forming a post-fabrication redistribution layer (post-Fab RDL) between first and second dielectric layers affixed over a surface of a wafer, and forming a window for receiving an electrical contact body in the second dielectric layer, the window exposing the post-Fab RDL. At least one of the first and second dielectric layers is a pre-formed dielectric layer, which may be affixed over the surface of the wafer using a lamination process. In one implementation, the window is formed using a direct laser ablation process.
US08922012B2
In an integrated circuit (IC) chip and a flip chip package having the same, no wiring line is provided and the first electrode pad does not make contact with the wiring line in a pad area of the IC chip. Thus, the first bump structure makes contact with the first electrode regardless of the wiring line in the pad area. The second electrode pad makes contact with the wiring line in a pseudo pad area of the IC chip. Thus, the second bump structure in the pseudo pad area makes contact with an upper surface of the second electrode at a contact point(s) spaced apart from the wiring line under the second electrode.
US08922008B2
A bump structure includes a first bump and a second bump. The first bump is disposed on a connection pad of a substrate. The first bump includes a lower portion having a first width, a middle portion having a second width smaller than the first width, and an upper portion having a third width greater than the second width. The second bump is disposed on the upper portion of the first bump.
US08922002B2
Microelectronic devices and method of forming a plurality of microelectronic devices on a semiconductor workpiece are disclosed herein. One such method includes placing a plurality of first interconnect elements on a side of a semiconductor workpiece, forming a layer on the side of the workpiece, reshaping the first interconnect elements by heating the first interconnect elements, and coupling a first portion of a plurality of individual second interconnect elements to corresponding first interconnect elements with a second portion of the individual second interconnect elements exposed.
US08922001B2
A semiconductor device in which warpage is less likely to occur. In the semiconductor device, two semiconductor chips are mounted over a diagonal of a substrate and one of the semiconductor chips lies over the intersection of the two diagonals of the substrate. The semiconductor device gives a solution to the following problem. In order to implement a semiconductor device with a plurality of semiconductor chips mounted on a substrate, generally the substrate must have a larger area. If the area of the substrate is increased without an increase in its thickness, warpage or deformation of the semiconductor device is more likely to occur. It is difficult or impossible to mount a warped or deformed semiconductor device over a wiring substrate.
US08921977B2
A capacitor array includes a plurality of capacitors and a support frame. Each capacitor includes an electrode. The support frame supports the plurality of electrodes and includes a plurality of support structures corresponding to the plurality of electrodes. Each support structure may surround the respective electrode. The support frame may include oxide of a doped oxidizable material.
US08921976B2
Passive circuit elements are formed at surfaces of two integrated circuit wafers. The passive circuit elements are utilized to align the two integrated circuit wafers to form an integrated circuit wafer stack.
US08921967B2
An integrated circuit (IC) combination of a target integrated circuit (TIC) and a plurality of thin film photovoltaic cells (PV) connected thereto. The IC comprises a target integrated circuit (TIC) having a top surface and a bottom surface; a plurality of thin film photovoltaic (PV) cells formed over at least one of the top surface and the bottom surface of the TIC, each PV cell includes at least a lower conducting layer (LCL) and an upper conducting layer (UCL); and a conducting path connecting at least a UCL of a first PV cell to at least a LCL of a second PV cell, wherein at least a first array of PV cells comprised of at least a first portion of the plurality of PV cells is connected by the respective UCL and LCL of each PV cell to provide a first voltage output.
US08921956B2
MEMS devices with a rigid backplate and a method of making a MEMS device with a rigid backplate are disclosed. In one embodiment, a device includes a substrate and a backplate supported by the substrate. The backplate includes elongated protrusions.
US08921950B2
A semiconductor device includes a gate electrode formed on a nitride semiconductor layer, and a source electrode and a drain electrode provided on the nitride semiconductor layer so as to interpose the gate electrode therebetween, a first silicon nitride film that covers the gate electrode and the silicon nitride film and has a composition ratio of silicon to nitrogen equal to or larger than 0.75, the first silicon nitride film having compressive stress solely, and a second silicon nitride film that is formed on the first silicon nitride film and has a composition ratio of silicon to nitrogen equal to or larger than 0.75 solely, a whole stacked layer structure of the first and second silicon nitride films having tensile stress.
US08921947B1
A method for manufacturing a semiconductor device and a device manufactured using the same are provided. A substrate with plural metal gates formed thereon is provided, wherein the adjacent metal gates are separated by insulation. A sacrificial layer is formed for capping the metal gates and the insulation, and the sacrificial layer and the insulation are patterned to form at least an opening for exposing the substrate. A silicide is formed corresponding to the opening at the substrate, and a conductive contact is formed in the opening. The conductive contact has a top area with a second diameter CD2 for opening the insulation. A patterned dielectric layer, further formed on the metal gates, the insulation and the conductive contact, at least has a first M0 opening with a third diameter CD3 for exposing the conductive contact, wherein CD2>CD3.
US08921940B2
To fabricate a semiconductor device, a fin is formed to protrude from a substrate. The fin is extended in a first direction. A gate line is formed on the fin and the substrate. The gate line is extended in a second direction crossing the first direction. An amorphous material layer is conformally formed to cover the substrate, the fin, and the gate line. The amorphous material layer is partially removed, thereby forming a first remaining amorphous layer on side walls of the fin and a second remaining amorphous layer on side walls of the gate line. The first remaining amorphous layer and the second remaining amorphous layer are annealed and the first remaining amorphous material layer and the second remaining amorphous material layer are crystallized into a monocrystalline material layer and a polycrystalline material layer, respectively. The polycrystalline material layer is removed.
US08921939B2
A stressed channel field effect transistor (FET) includes a substrate; a gate stack located on the substrate; a channel region located in the substrate under the gate stack; source/drain stressor material located in cavities in the substrate on either side of the channel region; and vertical source/drain buffers located in the cavities in the substrate between the source/drain stressor material and the substrate, wherein the source/drain stressor material abuts the channel region above the source/drain buffers.
US08921938B1
Some of the embodiments of the present disclosure provide a transistor comprising a p-type well; and an n-type well; wherein at least a part of one of the p-type well and the n-type well overlaps with at least a part of another of the p-type well and the n-type well. Other embodiments are also described and claimed.
US08921932B2
The substrate is made of a compound semiconductor and has a plurality of first recesses, each of which opens at one main surface thereof and has a first side wall surface. The gate insulating film is disposed on and in contact with the first side wall surface. The gate electrode is disposed on and in contact with the gate insulating film. The substrate include: a source region having first conductivity type and disposed to face itself with a first recess interposed therebetween, when viewed in a cross section along the thickness direction; and a body region having second conductivity type and disposed to face itself with the first recess interposed therebetween. Portions of the source region facing each other are connected to each other in a region interposed between the first recess and another first recess adjacent to the first recess, when viewed in a plan view.
US08921928B2
A semiconductor device having a low on resistance and high integration level with respect to the surface area of a substrate is provided. In the semiconductor device, a first trench, a second trench, and a third trench are provided in an element formation region provided on a semiconductor substrate. Metal is deposited within the first trench and second trench, to form a drain electrode and a source electrode, respectively. Polysilicon is deposited inside the third trench with a gate insulating film intervening, and a gate electrode is formed.
US08921924B2
According to one embodiment, a semiconductor memory device includes a semiconductor substrate, a cell transistor, an extraction section, a guard ring, a first transistor, and a second transistor. The semiconductor substrate includes first, second, third, and fourth regions. The fourth region includes first and second portions. The cell transistor is provided on the first region and includes a first insulating film, a charge storage film, and a first electrode. The extraction section is provided on the second region and includes a second insulating film, and an extension electrode. The guard ring is provided on the third region and includes a third insulating. The first transistor is provided on the first portion and includes a fourth insulating, and a second electrode. The second transistor is provided on the second portion and includes a fifth insulating film, and a third electrode.
US08921913B1
A floating gate forming process includes the following steps. A substrate containing active areas isolated from each other by isolation structures protruding from the substrate is provided. A first conductive material is formed to conformally cover the active areas and the isolation structure. An etch back process is performed on the first conductive material to respectively form floating gates separated from each other in the active areas.
US08921912B2
A nonvolatile memory device includes a substrate having active regions that are defined by an isolation layer and that have first sidewalls extending upward from the isolation layer, floating gates adjoining the first sidewalls of the active regions with a tunnel dielectric layer interposed between the active regions and the floating gates and extending upward from the substrate, an intergate dielectric layer disposed over the floating gates, and control gates disposed over the intergate dielectric layer.
US08921910B2
To reduce power consumption of a memory device. To reduce the area of a memory device. To reduce the number of transistors included in a memory device. The memory device includes a comparator comparing a first output signal with a second output signal, a first memory portion including a first oxide semiconductor transistor and a first silicon transistor, a second memory portion including a second oxide semiconductor transistor and a second silicon transistor, and an output potential determiner determining a potential of the first output signal and a potential of the second output signal. One of a source and a drain of the first oxide semiconductor transistor is electrically connected to a gate of the first silicon transistor. One of a source and a drain of the second oxide semiconductor transistor is electrically connected to a gate of the second silicon transistor.
US08921905B2
In a solid-state imaging device, N regions serving as photoelectric conversion diodes are formed on outer peripheries of P regions in upper portions of island-shaped semiconductors formed on a substrate, and P+ regions connected to a pixel selection line conductive layer are formed on top layer portions of upper ends of the island-shaped semiconductors so as to adjoin the N regions and the P regions. In the P+ regions, a first P+ region has a thickness less than a second P+ region, and the second P+ region has a thickness less than a third P+ region.
US08921902B2
An object is to provide a semiconductor device with improved reliability in which a defect stemming from an end portion of a semiconductor layer provided in an island shape is prevented, and a manufacturing method thereof. Over a substrate having an insulating surface, an island-shaped semiconductor layer is formed, a first alteration treatment is performed, a first insulating film is formed on a surface of the island-shaped semiconductor layer, the first insulating film is removed, a second alteration treatment is performed on the island-shaped semiconductor from which the first insulating film is removed, a second insulating film is formed on a surface of the island-shaped semiconductor layer, and a conductive layer is formed over the second insulating film. An upper end portion of the island-shaped semiconductor layer has curvature by the first alteration treatment and the second alteration treatment.
US08921896B2
A first linear-shaped conductive structure (LSCS) forming gate electrodes of both a first p-transistor and a first n-transistor. A second LSCS forming a gate electrode of a second p-transistor and including an extension portion extending away therefrom. A third LSCS forming a gate electrode of a second n-transistor and including an extension portion extending away therefrom. A fourth LSCS forming a gate electrode of a third p-transistor and including an extension portion extending away therefrom. A fifth LSCS forming a gate electrode of a third n-transistor and including an extension portion extending away therefrom. A sixth LSCS forming gate electrodes of both a fourth p-transistor and a fourth n-transistor. Four contact structures respectively contacting the extension portions of the second, third, fourth, and fifth LSCS's, such that at least two of the extension portions extend different distances beyond their contact structure.
US08921887B2
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer. A plurality of apertures penetrates the metal portion along the direction, each of the apertures viewed along the direction having equivalent circle diameters of not less than 10 nanometers and not more than 5 micrometers, and a Schottky barrier is provided between the second semiconductor layer and the metal portion.
US08921886B2
According to one embodiment, a semiconductor light emitting device includes a stacked structure body and an electrode. The stacked structure body has a first conductivity type first semiconductor layer including a nitride-based semiconductor, a second conductivity type second semiconductor layer including a nitride-based semiconductor, and a light emitting layer provided between the first and second semiconductor layers. The electrode has first, second and third metal layers. The first metal layer is provided on the second semiconductor layer and includes silver or silver alloy. The second metal layer is provided on the first metal layer and includes at least one element of platinum, palladium, rhodium, iridium, ruthenium, osmium. The third metal layer is provided on the second metal layer. A thickness of the third metal layer along a direction from the first toward the second semiconductor layer is equal to or greater than a thickness of the second metal layer.
US08921882B2
The light emitting device has a light emitting element 101, and translucent material 102 that passes incident light from the light emitting element 101 and emits that light to the outside. The sides of the translucent material 102 perimeter are inclined surfaces 107 that become wider from the upper surface to the lower surface. The area of the lower surface of the translucent material 102 is formed larger than the area of the upper surface of the light emitting element 101. The lower surface of the translucent material 102 and the upper surface of the light emitting element 101 are joined together, and the part of the lower surface of the translucent material 102 that is not joined with the light emitting element 101 and the inclined surfaces 101 are covered by light reflecting resin 103.
US08921881B2
A component emitting light radiation comprising a vertical junction supported on a substrate, the face of the substrate opposite the face on which the junction is made is provided with at least one first conducting zone dedicated to electrical contact and a second conducting zone insulated from the substrate and from the first conducting zone, the second zone being dedicated to heat dissipation.
US08921878B2
A light emitting device according to one embodiment includes a board; a light emitting element mounted on the board, emitting light having a wavelength of 250 nm to 500 nm; a red fluorescent layer formed on the element, including a red phosphor expressed by equation (1), having a semicircular shape with a diameter r; (M1−x1Eux1)aSibAlOcNd (1) (In the equation (1), M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Al (Aliminum), rare-earth elements, and IVB group elements),an intermediate layer formed on the red fluorescent layer, being made of transparent resin, having a semicircular shape with a diameter D; and a green fluorescent layer formed on the intermediate layer, including a green phosphor, having a semicircular shape. A relationship between the diameter r and the diameter D satisfies equation (2): 2.0r(μm)≦D≦(r+1000)(μm). (2)
US08921873B2
The present invention provides a light-emitting device which includes a plurality of LED chips mounted on a chip mount surface of a substrate provided with a wiring pattern. In the light-emitting device, the wiring pattern is provided so as to meet the following conditions (a), (b), and (c). (a) The wiring pattern divides the chip mount surface into at least three divided areas in a radial fashion from a center of the chip mount surface, and includes radial elements and circumferential elements so as to surround divided areas. (b) Of two radial elements and one circumferential element which surround each divided area as viewed from the individual divided area, one or two elements form part of a positive electrode pattern, and the remainder forms part of a negative electrode pattern. (c) There is only one radial element between adjoining ones of the divided areas.
US08921867B2
A thin-film transistor including: a gate electrode that is located above a substrate; a gate insulating layer that faces the gate electrode; a partition that defines an opening and has higher liquid repellency than liquid repellency of the gate insulating layer, the opening having a surface of the gate insulating layer therewithin; a semiconductor layer that faces the gate electrode with the gate insulating layer interposed therebetween and is formed within the opening by an application method; a source electrode and a drain electrode that are electrically connected to the semiconductor layer; and an intermediate layer that is made of the same material as a material of the partition and is located between the gate insulating layer and the semiconductor layer, wherein the intermediate layer is discretely present above the gate insulating layer.
US08921859B2
An array substrate for an electrophoresis type display device includes a plurality of gate lines on a substrate; a gate insulating layer on the plurality of gate lines; a plurality of data lines on the gate insulating layer and crossing the plurality of gate lines to define a plurality of pixel regions; a thin film transistor corresponding to each pixel region, the thin film transistor including a gate electrode, a semiconductor layer, and source and drain electrodes; a first passivation layer on the plurality of data lines; a second passivation layer on the first passivation layer, wherein the second passivation layer includes a first hole over the data line, and/or a second hole over the gate line with at least the gate insulating layer therebetween; and a pixel electrode on the second passivation layer and connected to the drain electrode, wherein a portion of the pixel electrode covers the first hole, and another portion of the pixel electrode covers the second hole. A method of manufacturing the same, and a method of repairing a line of the same is also disclosed.
US08921850B2
A thin film transistor (TFT), a method for fabricating a TFT, an array substrate for a display device having a TFT, and a method for fabricating the same are provided. An oxide thin film transistor (TFT) includes: a gate electrode formed on a substrate; a gate insulating layer formed on the gate electrode; an active layer formed on the gate insulating layer above the gate electrode; an etch stop layer pattern formed on the active layer; a source alignment element and a drain alignment element formed on the etch stop layer pattern and spaced apart from one another; and a source electrode in contact with the source alignment element and the active layer and a drain electrode in contact with the drain alignment element and the active layer.
US08921837B2
The present invention is to provide an organic light emitting display device for preventing a thin-film transistor from being deteriorated due to hydrogen when forming a light compensation layer configured to enhance viewing angle, and the organic light emitting display device may include a first substrate and a second substrate comprising a plurality of pixels; a thin-film transistor formed at each pixel of the first substrate; a color filter layer formed at each pixel; an insulating layer formed on the color filter layer; a light compensation layer formed on the insulating layer and made of a material containing no hydrogen; a pixel electrode formed on the light compensation layer of each pixel; an organic light emitting unit formed on the pixel electrode to emit light; and a common electrode formed on the organic light emitting unit.
US08921836B2
An object of the present invention is to provide a polymer compound providing high charge mobility. The polymer compound of the present invention has a repeating unit represented by the formula (1): wherein Ar1 and Ar2 are each an aromatic hydrocarbon ring, a heterocycle, or a fused ring of an aromatic hydrocarbon ring and a heterocycle; and R1, R2, R3 and R4 each represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, a substituted silyl group, an unsubstituted or substituted carboxyl group, a monovalent heterocyclic group, a cyano group or a fluorine atom.
US08921832B2
The present invention relates to a novel compound and an organic light emitting device using the compound, and the compound according to the present invention may largely improve a life span, efficiency, electrochemical stability and thermal stability of the organic light emitting device.
US08921829B2
The present invention provides a light receiving element array etc., having a high light-reception sensitivity in the near-infrared region, an optical sensor device, and a method for producing the light receiving element array. A light receiving element array 55 includes an n-type buffer layer 2 disposed on an InP substrate 1, an absorption layer 3 having a type-II MQW, a contact layer 5 disposed on the absorption layer, and a p-type region extending to the n-type buffer layer 2 through the absorption layer 3, wherein the p-type region formed by selective diffusion is separated from the p-type region of an adjacent light receiving element by a region that is not subjected to selective diffusion, and, in the n-type buffer layer, a p-n junction 15 is formed on a crossed face of a p-type carrier concentration of the p-type region and an n-type carrier concentration of the buffer layer.
US08921828B2
An exemplary light emitting diode includes a first type semiconductor layer, a second type semiconductor layer, and a multi quantum well layer sandwiched between the first and second type semiconductor layers. The multi quantum well layer includes a first barrier layer, a second barrier layer, two well layers sandwiched between the first and second barrier layers, and a third barrier layer sandwiched between the two well layers. The first and second barrier layers each have an energy level of conduction band higher than that of the third barrier layer. The first and second barrier layers each have an energy level of valence band higher than that of the third barrier layer.
US08921822B2
A phase-change random access memory (PRAM) device and a method of manufacturing the same are provided. The PRAM device includes a semiconductor substrate in which a switching device is formed, a lower electrode configured to be formed on the switching device and having a void formed in a portion of an upper surface thereof, and a phase-change layer configured to be formed on the lower electrode having the void.
US08921818B2
A semiconductor structure includes a resistance variable memory structure. The semiconductor structure also includes a dielectric layer. The resistance variable memory structure is over the dielectric layer. The resistance variable memory structure includes a first electrode disposed over the dielectric layer. The first electrode has a sidewall surface. A resistance variable layer has a first portion which is disposed over the sidewall surface of the first electrode and a second portion which extends from the first portion away from the first electrode. A second electrode is over the resistance variable layer.
US08921816B2
Provided is a semiconductor device. The semiconductor device includes a lower active region on a semiconductor substrate. A plurality of upper active regions protruding from a top surface of the lower active region and having a narrower width than the lower active region are provided. A lower isolation region surrounding a sidewall of the lower active region is provided. An upper isolation region formed on the lower isolation region, surrounding sidewalls of the upper active regions, and having a narrower width than the lower isolation region is provided. A first impurity region formed in the lower active region and extending into the upper active regions is provided. Second impurity regions formed in the upper active regions and constituting a diode together with the first impurity region are provided. A method of fabricating the same is provided as well.
US08921813B2
An ultraviolet (UV) germicidal or sterilization fixture having a dual parabolic reflecting assembly for collimating and redirecting UV light. The first pair of parabolic reflectors are positioned to collimate and reflect light emanating from the sides of the UV light source and spaced apart proximately to the rear surface of the UV source to allow light to pass through. The second pair of reflectors are positioned behind the first pair and aligned to capture light passing through the gap formed by the first pair of reflectors and then collimate and redirect the light produced by the rear of the light source out of the front of the fixture.
US08921811B2
The current invention includes methods and apparatuses for processing, that is, altering and imaging, a sample in a high pressure charged particle beam system. Embodiments of the invention include a cell in which the sample is positioned during high pressure charged particle beam processing. The cell reduces the amount of gas required for processing, thereby allowing rapid introduction, exhaustion, and switching between gases and between processing and imaging modes. Maintaining the processes gases within the cell protects the sample chamber and column from contact with the gases. In some embodiments, the temperature of the cell walls and the sample can be controlled.
US08921806B2
The present invention relates to a photo-responsive layer and layer assembly which can be used for controlling a flow of liquid for example in a water-purification device. The photo-responsive layer according to the invention comprises a first domain comprising a first material comprising molecules having a photo-responsive moiety, wherein the first domain of the photo-responsive layer is capable of undergoing a reversible geometrical change when said photo-responsive moiety is exposed to photo-activating illumination, such as UV-radiation. The photo-responsive layer is useful in UV controlled membranes e.g. for water purification.
US08921801B2
A γ-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive α-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a γ-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the γ-radiation. Subsequently, it is determined whether a coincidence exists between the α-particles and γ-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the α-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.
US08921794B2
A device (100) is described for actively or passively modulating incident radiation, the device comprising at least one diffraction means (10) adapted for evanescent wave excitation upon irradiation with the incident radiation, and an absorption layer (40) adjacent the at least one diffraction means (10) so that the evanescent waves can interact with the absorption layer (40). The absorption layer (40) has alterable absorption properties so as to alter the absorption of the evanescent waves resulting in modulating of the incident radiation. The device (100) may be for actively modulating incident radiation thus being e.g. a modulator for laser radiation. Alternatively, the device may be for passively modulating incident radiation, thus acting as a sensing device for sensing environmental parameters.
US08921792B2
A vertically stacked thermopile and an IR sensor using said stacked thermopiles are provided. The vertically stacked thermopile may include multiple thermocouples stacked vertically on one another. The thermocouples may be connected in series, parallel, or a combination of series and parallel. One or more vertically stacked thermopiles may be included in an IR sensor and the thermopiles may be connected in series, parallel, or a combination of series and parallel.
US08921779B2
A novel scanning method of a mass spectrometer apparatus is introduced so as to relate by simple time shifts, rather than time dilations, the component signal (“peak”) from each ion even to an arbitrary reference signal produced by a desired homogeneous population of ions. Such a method and system, as introduced herein, is enabled in a novel fashion by scanning exponentially the RF and DC voltages on a quadrupole mass filter versus time while maintaining the RF and DC in constant proportion to each other. In such a novel mode of operation, ion intensity as a function of time is the convolution of a fixed peak shape response with the underlying (unknown) distribution of discrete mass-to-charge ratios (mass spectrum). As a result, the mass distribution can be reconstructed by deconvolution, producing a mass spectrum with enhanced sensitivity and mass resolving power.
US08921778B2
An ion mobility spectrometer has a pair of electrodes and midway along the drill chamber. A high field is applied between the electrodes and sufficient to modify ions in the region of the electrodes such that they move at a different rate towards the collector plate. This is used to modify the time of flight of selected ions or ion clusters and enable identification of ambiguous peaks on the IMS spectrum.
US08921773B2
Techniques are described for performing mass spectrometry. A stream of one or more ions is generated. The stream is transmitted into a collision cell over a period of time. In accordance with a set of criteria including a retention time of one or more precursor ions, a collision energy of the collision cell is selected to generate one or more product ions for said one or more precursor ions in said stream.
US08921771B2
The present invention provides a corona discharge device, comprising a first electrode including: a first substantially cylindrical inner chamber portion and a second substantially conical inner chamber portion in communication with the first inner chamber portion, wherein the second inner chamber portion has a cross sectional area that gradually enlarges in a direction away from the first inner chamber portion. The present invention also provides an ion mobility spectrometer comprising: an ionization region; and the corona discharge device disposed in the ionization region. With the above construction and structure, the ion mobility spectrometer of the present invention has the advantages that extraction of ions is facilitated and a life time of the corona electrode is lengthened. In addition, the focusing and storing electrode is used to effectively shield interference of a corona discharge pulse, and to push and focus sample ions. A designed voltage control solution is used to achieve mobility differentiating of ions, while a corona pulse is shielded to prevent variation in an ion quantity due to the corona pulse, thereby achieving an effect of stabilizing mobility spectrum lines.
US08921767B2
A method for calibrating a Fourier domain optical coherence tomography system includes receiving spectral data from an optical detector comprising a linear array of detector elements, each detector element having a position labeled n, wherein detected light was wavelength-dispersed across the linear array of detector elements; determining parameters of a preselected functional relationship between wave number, kn, corresponding to detector element n as a function of optical detector element n based on the spectral data; further receiving subsequent spectral data subsequent to the first-mentioned receiving, wherein detected light was wavelength-dispersed across the linear array of detector elements; converting the subsequent spectral data using the preselected functional relationship between wave number kn and optical detector element n to obtain converted spectral data; and performing an inverse Fourier transform of the converted spectral data to obtain a depth profile.
US08921755B2
The detection circuit with correlated double sampling comprises two transimpedance amplifiers connected by means of a sampling capacitor. A photodiode is connected to the input of the first transimpedance amplifier. The circuit comprises an anti-blooming circuit connected between the input and output of the first transimpedance amplifier. The anti-blooming circuit comprises means for comparing the output voltage of the first transimpedance amplifier with a setpoint voltage defined by means of the output voltage of the second transimpedance amplifier. The means for comparing are connected to means for applying a feedback current to the input of the first transimpedance amplifier when the difference between the output voltage and the setpoint voltage reaches a limit value.
US08921748B2
An optical window for a detection system and method of employing the same. In one embodiment, the detection system includes an optical window configured to internally channel external incident radiation to an exit surface for emission. The detection system also includes a detector oriented to receive emitted radiation from the exit surface.
US08921747B2
A power supply includes a filter that attenuates a noise component being transmitted toward a source that supplies an AC current. The filter lacks a capacitor establishing a conductive path for conducting a high-frequency alternating signal, a leakage current, or both to a ground electrode. A rectifier is included, and is disposed electrically between the filter and a load that is to be energized by operation of the power supply. The rectifier converts AC into a rectified signal. The power supply also includes a grounding capacitor that establishes a capacitive, conductive path between an output of the rectifier and a ground electrode that is to be electrically connected to ground. The grounding capacitor is electrically separated from the filter by the rectifier, and extends electrically between the ground electrode and at least one of: a positive DC bus conductor from the rectifier, and a DC bus return to the rectifier.
US08921744B2
A line connector for media lines having a connecting piece with a flow channel, at least one connecting section for connection to a media line or unit, and at least one transition section adjacent to the connecting section. In order to prevent freezing of the respective medium at low temperatures in the connecting area or to thaw a frozen medium, the line connector includes heating means arranged to at least partially enclose the flow channel. A fixing part, with elements for guiding and fixing the heating means, is provided on the connecting piece.
US08921742B2
A toaster cover control device with fireproofing function comprises a cover sliding-frame or a cover opening-closing mechanism and a power switch (K), a cover switch (K1) and a control circuit that are provided in the toaster. The said control circuit is provided with a microprocessor. An output terminal of the control circuit is connected with a transistor (Q1). The said control circuit is connected with a sensor (S). The sensor detects the temperature of the toaster. The control circuit provides a control signal when the detected temperature exceeds the set temperature value, so that a circuit controlling cover action keeps the cover closed. The cover can be opened normally when the detected temperature is lower than the set temperature value. It is also provided with an application method of the said control device.
US08921734B2
A laser cutting machine includes a platform and a motion system. The motion system includes a first prismatic joint facilitating a first motion of the platform along a first direction and a second prismatic joint facilitating a second motion of the platform along a second direction. A galvano arranged on the platform, such that a motion of the platform causes a motion of the galvano, the galvano including a first mirror, wherein a third motion of the first mirror positions the laser beam along a third direction, and a second mirror, wherein a fourth motion of the second mirror positions the laser beam along a fourth direction. A control module controls concurrently the motion system and the galvano, such that a position of the laser beam on the workpiece is a vector sum of the first motion, the second motion, the third motion, and the fourth motion.
US08921733B2
Removing material from the surface of a first circuit comprises generating a first laser pulse using a pulse generator; targeting a spot on the first circuit using a focusing component; delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component; ablating material from the spot using the first laser pulse without changing a state of the digital component; testing performance of the first circuit, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance. Targeting the spot on the first circuit comprises generating a second laser pulse using a pulse generator; delivering a second laser pulse to a sacrificial piece of material; detecting the position of the ablation caused by the second laser pulse with a vision system that forms an image; and using this image to guide the first laser to the spot.
US08921727B2
A double-layer electrode device includes an electrode bottom layer formed on a transparent substrate, and an electrode top layer formed on the electrode bottom layer. First electrodes of the electrode bottom layer are separated from each other, and second electrodes of the electrode bottom layer are connected via second conductive connecting portions. An insulating block is formed on the second conductive connecting portion. Second electrodes of the electrode top layer are separated from each other, and first electrodes of the electrode top layer are connected via first conductive connecting portions, which are disposed cross the insulating blocks, respectively.
US08921717B2
The disclosed systems and methods allow the weight and relative position of an object on a weighing surface to be simultaneously determined using a circuit that does not require pre-programmed tables and that can be used in an analog or digital environment. One example system includes first, second, third, and fourth load cells having respective first, second, third, and fourth strain gauges. The strain gauges are configured to measure strain at the load cells caused by the object on the weighing surface. The system also includes circuitry configured to simultaneously determine weight and position of the object on the weighing surface, and a display that reports the weight of the object, a longitudinal position of the object, and a lateral position of the object.
US08921714B2
The present invention is directed to a modular wall box system configured to be mounted substantially flush with respect to the wall. The assembly includes a plurality of wall surfaces, each wall surface includes a single gang opening that accommodates an AC electrical wiring device or a low voltage telecom device. At least one removable flange cover is configured to be removably coupled to the mounting flange. At least one modular connector can be inserted within the single gang modular device opening and includes a slidable engagement portion. The slidable engagement portion slidably engages a lateral edge of the wall surface forming the single gang modular device opening such that the at least one modular connector is slidably moveable to any vertical position.
US08921712B1
An electrical box assembly for concrete pours that includes an improved leveling ring and can be adapted to mount either high or low voltage components or a combination of high and low voltage components. The leveling ring for leveling an electrical component with respect to the concrete surface includes one or more legs extending outward of the ring's periphery for improving adhesion of the ring with the inner surface of the electrical box. The versatility of the electrical box is improved by a slide member that can be inserted within the enclosure of the electrical box in order to subdivide the enclosure into high and low voltage compartments. Leveling rings are provided in two embodiments for mounting conventional electrical box covers, one for mounting a flat electrical box cover and one for mounting a pop-up electrical box cover.
US08921710B2
An electromagnetic shielding configuration comprising a first electrically conductive wall having a first surface and a second electrically conductive wall having a second surface. The first surface is oppositely disposed from the second surface, wherein interfacing of the first conductive wall and the second conductive wall forms an enclosure wall. The first surface comprises at least one stepped edge forming a plurality of surfaces of unequal lateral displacement, and a corrugated surface on at least one of the plurality of surfaces, the corrugated surface formed by a series of apices extending radially from the first surface. The second surface is substantially a conjugate of the first surface.
US08921698B2
A tether, and system using such a tether, adapted to provide mechanical and electrical coupling of an airborne flying platform to the ground. The tether may have a center structural core with electrical conductors on or near the outer diameter of the tether. The tether may utilize exterior configurations adapted to reduce drag.
US08921690B2
The light concentrator having a primary optical element which has an optical axis and a core comprising a rigid body which is co-linear with the optical axis and configured to support the primary optical element.
US08921687B1
Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.
US08921683B2
A solar powered generator (100) has thermoelectric elements adjacent to and below solar cells. Concentrated sunlight is provided. A heat sink (104), which can be variable in temperature or efficiency, is in contact with the cold junction (108) of the thermoelectric device (103). The thermal resistivity is designed in relation to the energy flux, whereby the thermoelectric device (103) develops a gradient of several hundred Kelvin. Preferably the solar cell comprises a high band gap energy semi-conductor. The generator (100) maintains relatively consistent efficiency over a range of cold junction (108) temperatures. The heat sink (104) can be a hot water system. High efficiencies are achieved using nanocomposite thermoelectric materials. Evenly but thinly dispersing the thermoelectric segments in a matrix of highly insulating material reduces the amount of material required for the segments without sacrificing performance. A unitary construction of the solar cell and thermoelectric elements provides further advantages.
US08921675B2
An adjustable bridge for a stringed instrument has a saddle housing defining a plurality of saddle slots and a saddle disposed within each saddle slot. Each saddle is axially adjustable within a saddle slot parallel to its instrument string and is firmly retained within a saddle slot by friction and/or by a tautly drawn instrument string disposed across the saddle. The adjustable bridge employs no springs, set screws, detents, removable screws or other removable fasteners.
US08921673B2
A rice hybrid designated HR120001 (ATCC PTA-13290) is disclosed. The invention relates to the seeds of rice hybrid HR120001, to the plants of rice hybrid HR120001 and to methods for producing a rice plant produced by crossing the hybrid HR120001 with itself or another rice plant. The invention further relates to hybrid rice seeds and plants produced by crossing the hybrid HR120001 with another rice plant. This invention further relates to growing and producing blends of rice seeds comprised of seeds of rice hybrid HR120001 with rice seed of one, two, three, four, or more of another rice hybrid, rice variety or rice inbred.
US08921671B2
The invention provides seed and plants of tomato line FDR-9Q08131. The invention thus relates to the plants, seeds and tissue cultures of tomato line FDR-9Q08131, and to methods for producing a tomato plan produced by crossing such plants with themselves or with another tomato plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants, including the fruit and gametes of such plants.
US08921665B2
A novel soybean variety, designated XB009M13 is provided. Also provided are the seeds of soybean variety XB009M13, cells from soybean variety XB009M13, plants of soybean XB009M13, and plant parts of soybean variety XB009M13. Methods provided include producing a soybean plant by crossing soybean variety XB009M13 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB009M13, methods for producing other soybean varieties or plant parts derived from soybean variety XB009M13, and methods of characterizing soybean variety XB009M13. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB009M13 are further provided.
US08921657B2
The present invention relates to an expression cassette for regulating seed-specific expression of a polynucleotide of interest, said expression cassette comprising a transcription regulating nucleotide sequence, to a vector comprising said expression cassette, host cells and transgenic plants comprising the expression cassette, and methods of producing said transgenic plants.
US08921651B2
The present invention is directed to plants that display an improved oil quantity phenotype or an improved meal quality phenotype due to altered expression of an HIO nucleic acid. The invention is further directed to methods of generating plants with an improved oil quantity phenotype or improved meal quality phenotype.
US08921650B1
A novel maize variety designated PH1JNY and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1JNY with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1JNY through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1JNY or a locus conversion of PH1JNY with another maize variety.
US08921641B2
An absorbent article such as disposable diaper, training pant, and adult incontinence undergarment comprising superabsorbent polymer particles able to absorb and contain body exudates having improved absorption properties and, therefore, reduce leakage, especially at the first gush, i.e. when the article starts to be wetted.
US08921640B2
A lotion composition is provided. The lotion composition can comprise a) about 0.1% to about 90%, by weight, of a microcrystalline wax; b) about 0.1% to about 25%, by weight, of POE-4 monolaurate; c) about 0.1% to about 50%, by weight, of POE-8 monostearate; and d) a carrier.
US08921639B2
A method is provided for the decontamination of radioactive carbonaceous material, such as graphite, in which an injection of steam is planned into the material, concurrent with a first roasting thermal treatment of the material at a temperature between 1200° C. and 1500° C. Advantageously, the first treatment may be followed by a second treatment at a lower temperature with an injection of carbon oxide for oxidation according to the Boudouard reaction.
US08921637B2
A process for separating methane from a natural gas mixture employs pressure swing adsorption in one or more vessels. Each vessel has an adsorbent material having a kinetic selectivity for contaminants over methane greater than 5. Contaminants within the natural gas mixture become gases kinetically adsorbed within the adsorbent material. The vessel is placed under pressure to cause contaminants to be adsorbed in the surfaces and micro-pores of the adsorbent material. The process includes releasing a product stream comprised at least 95% by volume methane from a first gas outlet in the vessel, and desorbing the contaminant gases from the adsorbent material by reducing the pressure within the vessel. The desorbing step is done without applying heat to the vessel, thereby delivering a waste gas stream comprised at least 95% by volume of the contaminant gases. An improved fractionation vessel having both major and minor flow channels is also provided.
US08921633B2
In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12+ olefinic and aromatic hydrocarbons is recovered from the first stream and blended said second stream with a residual fraction from a steam cracker or an atmospheric or vacuum distillation unit to produce a third stream. The third stream is then catalytically pyrolyzed in a reactor under conditions effective to produce a fourth stream having an increased benzene and/or toluene content compared with said second stream and a C3-olefin by-product. The C3-olefin by-product is recovered and benzene and/or toluene are recovered from the fourth stream.
US08921629B2
Biofuels can be produced via an organic phase hydrocatalytic treatment of biomass using an organic solvent that is partially miscible with water. An organic hydrocarbon-rich phase from the hydrocatalytically treated products can be recycled to form at least a portion of the organic phase.
US08921626B2
The operation of a plant for producing a gas hydrate is stabilized by making the gas phase within a downstream step have the same equilibrium composition as that of the gas phase within a generation step. The gas phase within a mixed-gas hydrate generation step is circulated to the gas phase within a downstream step located downstream of the mixed-gas hydrate generation step, and the gas phase within each step is thereby made to have the same equilibrium composition as that of the gas phase within the generation step.
US08921621B2
A process for the manufacture of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) at commercial scale from the reaction of HCC-240 and HF is disclosed. In one embodiment, HCC-240fa and HF are fed to a reactor operating at high pressure. Several different reactor designs useful in this process include; a stirred-tank reactor (batch and/or continuous flow); a plug flow reactor; a static mixer used as a reactor; at least one of the above reactors operating at high pressure; optionally combined with a distillation column running at a lower pressure; and combinations of the above; and/or with a distillation column. The resulting product stream consisting of 1233zd, HCl, HF, and other byproducts is partially condensed to recover HF by phase separation. The recovered HF phase is recycled to the reactor. The HCl is scrubbed from the vapor stream and recovered as an aqueous solution. The remaining organic components including the desired HCFC-1233zd are scrubbed, dried and distilled to meet commercial product specifications.
US08921611B1
The invention provides a method for preparing 1,4-di-tert-butyl-2,5-bis(2-methoxyethoxy)benzene, the method comprising reacting 2,5-di-tert-butylbenzene-1,4-diol with cesium carbonate and halogenated ether in dimethyl formamide. The method yields 500 gram batches at a time, or multiples thereof. The method enables the industrial production of redox shuttles for use in lithium ion battery systems.
US08921607B2
Mixed butene streams containing butene-1 and isobutylene and optionally butene-2 are hydroformylated under conditions that hydroformylates all the monomers to yield a mixture of valeraldehydes. Higher temperatures and/or longer residence times and/or higher partial pressure of carbon monoxide than in conventional processes are used to ensure hydroformylation of all the monomers.
US08921605B2
Use of pure lanthanum oxide which is obtained by calcination of oxygen-containing lanthanum salts at temperatures of at least 700° C. as heterogeneous catalyst in the aldol condensation of citral and acetone to give pseudoionone, and process for the preparation of pseudoionone by aldol condensation of citral and acetone in the liquid phase using pure lanthanum oxide.
US08921595B2
In accordance with certain embodiments of the present disclosure, a self-assembling biodegradable nanoparticle is provided. The nanoparticle includes Cys-Val-Val-Val-Val-Val-Val-Lys-Lys conjugated with a synthetic polymer and has a diameter of from about 50 nm to about 150 nm.
US08921592B2
A process of producing oxalate by CO gas phase method includes the following steps: a) introducing nitrite salt, water and an inorganic acid first into a reactor I to produce a NO containing effluent I; and separating the resultant effluent to obtain the effluent II of NO; b) introducing the effluent II of NO, a C1-C4 alkanol and oxygen into a reactor II to be subjected to the reaction, and separating the resultant effluent to obtain the effluent IV of C1-C4 alkyl nitrites; c) introducing the effluent IV of C1-C4 alkyl nitrites and a CO gas stream into a coupling reactor where they are reacted to produce a NO containing effluent VI. The reactor I and/or the reactor II are preferably rotating supergravity reactors. Therefore, the process is applicable to the industrial production of oxalate by CO gas phase method.
US08921584B2
A composition is provided that contains an intermediate for a water-soluble monomer, wherein this intermediate is suitable for producing a water-soluble polyalkylene glycol-type monomer that has a polymerizable terminal double bond, and suitable for the production of water-soluble polymer, and moreover allows the high-yield production of water-soluble polymer. A process of producing this composition and a water-soluble monomer-containing composition obtained therefrom are also provided. A water-soluble monomer is also provided that can be used as a starting material for a water-soluble polymer that even at high hardnesses exhibits an excellent capacity to capture metal ions such as the calcium ion and magnesium ion, an excellent anti-gelation performance, an excellent anti-soil redeposition performance, a better anti-dye transfer performance than in the past, and also an excellent compatibility with surfactants. A production process is also provided that can produce such a water-soluble monomer at higher yields and higher selectivities (higher purities) than in the past. A composition containing an intermediate for a water-soluble monomer, that contains a compound (A) having a specified structure and that contains a specified amount of a compound (B) having a specified structure. Also, a water-soluble monomer having a specified structure is provided.
US08921575B2
The present invention relates to O-CYCLOPROPYLCYCLOHEXYL-CARBOXANILIDES derivatives of formula (I); their process of preparation, their use as fungicide, particularly in the form of fungicide compositions, and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.
US08921568B2
Iminosugar compounds are described that have inbuilt delivery features by virtue of covalent incorporation of a tocopherol moiety, or alternative moieties that are analogs of tocopherol or select analogs of cholesterol, or its antagonist “Ezitimibe”; and are likely to have broad spectrum antiviral activity. The compounds differ from previous iminosugar compounds, even lipophillic ones, being more hydrophobic and resembling fats and oils in their partition behavior in vivo into lipid phases of lipoproteins, cellular lipid droplet organelles and biological membranes. These features confer a number of unique delivery attributes in vivo, favorable to the therapy of virus infections involving cells of the lymphoid system and the liver, in particular, but these features are also favorable in general for the treatment of virus infections of man and animals.
US08921563B2
Provided are N-[(4-hydroxypiperidin-4-yl)methyl]pyridin-2(1H)-one derivatives represented by formula I, stereoisomers, pharmaceutically acceptable salts or solvates thereof. The above compounds have the dual activities of 5-hydroxytryptamine 1A receptor ligand and selective serotonin reuptake inhibitor. The preparation methods of the above compounds, the uses of these compounds for the prevention or treatment of nervous system diseases related to 5-hydroxytryptamine system dysfunction and the pharmaceutical compositions containing these compounds are also provided.
US08921558B2
Novel mono-azide substituted rylene-imide derivatives, their use in methods for the detection of analytes and reagents kits for the detection of analytes comprising said novel mono-azide substituted rylene-imide derivatives.
US08921556B2
The present disclosure provides improved methods for N-dealkylation of tertiary amines, including methods for N-demethylation of alkaloids and opioids, in which the dealkylation reaction is carried out in a solvent comprising a tertiary alcohol. The present disclosure also provides improved processes for preparing semi-synthetic opioids that incorporate the disclosed methods for N-dealkylation of tertiary amines.
US08921553B2
Naphthalene diimide (NDI) compounds can be functionalized with tin reagent to provide a useful, versatile synthetic tool. One embodiment provides, for example, a composition comprising at least one NDI compound comprising at least one stannyl substituent bonded to the naphthalene moiety of the NDI compound. Applications include organic electronic devices including OLED, OPV, OFET, and sensing devices.
US08921543B2
Chemically reactive carbocyanine dyes that are intramolecularly crosslinked between the 1-position and 3′-position, their bioconjugates and their uses are described. 1,3′-crosslinked carbocyanines are superior to those of conjugates of spectrally similar 1,1′-crosslinked or non-crosslinked dyes. The invention includes derivative compounds having one or more benzo nitrogens.
US08921542B2
The present invention relates to compounds of the formula in which the variables G, W, Q, X, Y, B1, B2, Z1, Z2, and R1-R7 are as defined herein, methods for the preparation of the derivatives and intermediates thereof.
US08921528B2
Drug compositions, fusions and conjugates are provided. The drug fusions and conjugates contain a therapeutic or diagnostic agent that is fused or conjugated to an antigen-binding fragment of an antibody that binds serum albumin. The drug compositions, fusions and conjugates have a longer in vivo half-life in comparison with the unconjugated or unfused therapeutic or diagnostic agent.
US08921526B2
The present invention is directed to modified antibodies, including anti-TNFα antibodies, in which C-terminal amino acids of heavy chain sequences are modified from a native sequence of proline-glycine-lysine (“PGK”) to one that includes a proline positioned between the glycine and lysine, resulting in a C-terminal sequence of proline-glycine-proline-lycine (“PGPK”). The invention further provides methods of producing and using such antibodies.
US08921523B2
Antigen binding proteins that bind β-amyloid peptide, in particular human β-amyloid peptide; methods of treating diseases or disorders characterized by elevated β-amyloid levels or β-amyloid deposits, particularly Alzheimer's disease and diseases or disorders affecting the eye or optic nerve characterized by elevated β-amyloid levels or β-amyloid deposits, including age related macular degeneration and glaucoma type diseases and β-amyloid dependent cataract formation, with the antigen binding proteins; pharmaceutical compositions comprising the antigen binding proteins; and methods of manufacture.
US08921521B2
The present invention provides novel conformationally-defined macrocyclic compounds that have been demonstrated to be selective modulators of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R1a and subtypes, isoforms and variants thereof). Methods of synthesizing the novel compounds are also described herein. These compounds are useful as agonists of the ghrelin receptor and as medicaments for treatment and prevention of a range of medical conditions including, but not limited to, metabolic and/or endocrine disorders, gastrointestinal disorders, cardiovascular disorders, obesity and obesity-associated disorders, central nervous system disorders, genetic disorders, hyperproliferative disorders and inflammatory disorders.
US08921518B2
The present invention provides a method for industrial-scale protein separation by reverse phase chromatography by use of a buffer system and an additional salt.
US08921517B2
The present invention relates to a process for the production of bivalirudin, a 20-mer peptide of formula H-(D)-Phe-Pro-Arg-Pro-Gly-Gly-Gly-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-OH (SEQ ID NO: 1).
US08921516B2
The present invention discloses compositions for applications that mimic fibronectin coated surfaces. Advantageously, such compositions provide an animal free (xeno-free, and human-component-free), synthetic, chemically defined surface that mimics at least one of the functionalities of fibronectin.
US08921512B2
The invention concerns processes for forming polymer crumb comprising residues of 2-(4-amino phenyl)-5(6)amino benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of b mole percent DAPBI and y mole percent PPD in a solvent system comprising organic solvent and c weight percent of an inorganic salt, wherein the inorganic salt is present in an amount of at least 5 weight percent of the organic solvent, DAPBI and PPD being present in an amount sufficient for providing a polymer solution having a weight percent solids of 12 percent or greater on a polymer basis; and (b) contacting the slurry of step a) with a stoichiometric amount of terephthaloyl dichloride to form a product comprising the polymer; wherein the sum of y+b is 100 and the product of b×c is 225 or greater.
US08921504B2
Disclosed is a method for removing an ionic species contained in an aqueous phase. The method includes contacting an aqueous phase containing the ionic species with a sol gel-derived composite material, where the sol gel-derived composite material is a sol gel-derived composition having a porous matrix and containing a reactive metal incorporated into at least a portion of the porous matrix, under conditions sufficient to remove the ionic species contained in the aqueous phase.
US08921488B2
The present invention provides a resin composition for extrusion coating, the composition including (1) at least one of a copolymer of ethylene and α,β-unsaturated carboxylic acid or an ionomer thereof and (2) a homopolypropylene, wherein a content of the component (2) is 3 to 12% by mass based on the total mass of the component (1) and the component (2) and has a melt flow rate (at a load of 2160 g and 190° C., JIS K7210) of 4.0 g/10 min. or more.
US08921472B2
A composition for protecting a surface of an organic substrate, such as VCT, wood, or a synthetic laminate material, includes a silicate (i.e., an alkali metal polysilicate or colloidal silica) and a siliconate (e.g., a metal siliconate, such as an alkali metal methyl siliconate, etc.). In addition, the composition may include acrylic latex, a silane coupling agent, and a solvent, such as ethylene glycol monobutyl ether. Such a composition may also include a leveling agent, such as a surfactant. Organic substrates, such as VCT, wood, and synthetic laminate materials, with such a composition on their surfaces are also disclosed.
US08921469B2
Solvent composition comprising ethanol, aromatic hydrocarbon or hydrocarbon mixture, high-boiling solvent, wire enamel formulation based on polyvinyl formal and comprising the solvent composition, preparation process and use.
US08921467B2
An aqueous adhesive dispersion containing 25 to 70 wt % acrylate block copolymers and/or styrene block copolymers that have a molecular weight of more than 15,000 g/mol and at least two different glass transition temperatures, one glass temperature (Tg) being above 50° C., the other glass transition temperature below +10° C., as well as additionally further additives, the dispersion containing less than 0.5 wt % organic solvent.
US08921460B2
Polyamide-filled acrylate copolymer compositions comprising a continuous acrylate copolymer phase and a discontinuous polyamide phase are produced by a melt mixing process. When crosslinked with diamine curatives the polyamide-filled acrylate copolymer compositions exhibit enhanced resistance to heat aging compared to carbon black-reinforced acrylate copolymer compositions.
US08921457B2
Provided is a resin molded body which has excellent flame retardance, weather resistance, shock resistance and tracking resistance. The resin molded body is composed of a thermoplastic resin composition comprising a thermoplastic resin, a polycarbonate, an elastomer, and a flame retardant. By adopting this combination of components, a Charpy impact value at 23° C. measured in conformity with ISO 179/1eA is 15 kJ/m2 or more and flame retardance measured under a condition of thickness of 1.0 mm and in conformity with UL94 is V-0 or more, and a resin molded body which can be used favorably outdoors is produced.
US08921454B2
This invention relates to a solid marking composition comprising at least one resin, at least one pigment, at least one dispersant, at least one solvent, and a gelling agent. This invention also provides a method of making the solid marking composition.
US08921448B1
A low toxicity, highly efficient transfection composition is described with an amphipathic compound containing at least one imidazole. The composition may be used in the process of transfecting nucleic acids into an animal cell.
US08921447B2
The invention provides a process for manufacturing a polymeric material having a compositional gradient, comprising: forming a mixture comprising a first photopolymerizable polymer precursor and a second photopolymerizable precursor, and subjecting said mixture to an intensity gradient of electromagnetic radiation, wherein said first precursor has a greater reactivity ratio than said second precursor, and/or said first precursor is mono-functional and said second precursor is di-functional, and/or said first precursor is less inhibited by oxygen than said second precursor.
US08921441B2
The present disclosure relates to a thermally resistant optical siloxane resin composition including siloxane containing photo-cationically polymerizable epoxy group, a photo initiator, and an antioxidant.