US09307684B2

The present invention provides a liquid crystal display (LCD) panel and a LCD apparatus. The LCD panel has a display region and a periphery region and comprises an array substrate and a color filter substrate opposite to each other, the array substrate has a plurality of pixel regions defined by intersecting signal lines in the display region, each pixel region comprises a thin film transistor, and signal leads are connected to the signal lines and disposed in the periphery region. Wherein, the LCD panel further comprises at least one shielding layer located in the periphery region, which is grounded and electrically conductive. The LCD apparatus comprises the LCD panel.
US09307676B2

A thermally enhanced electronic package comprises a driver chip, an insulator, a flexible carrier, and carbon nanocapsules. The flexible carrier includes a flexible substrate, a wiring layer formed on the substrate, and a resistant overlaying the wiring layer. The driver chip is connected to the wiring layer. The insulator is filled in the gap between the driver chip and the flexible carrier. The carbon nanocapsules are disposed on the driver chip, on the resistant, on the flexible carrier, or in the insulator to enhance heat dissipation of electronic packages.
US09307671B2

Embodiments of the present invention relate to a board cooling apparatus comprising a shell and a board, where the board and an interior wall of the shell form a closed space, a cooling medium inlet and a cooling medium outlet are disposed on the shell, a separator plate that separates the board into a first part and a second part, a through opening between the first part and the second part, a cooling medium flows into the first part from the cooling medium inlet and then flows into the second part, and flows out from the cooling medium outlet, a flow guiding mechanism that is disposed on the board and configured to divert the cooling medium flowing into the first part from the cooling medium inlet, so as to directly guide part of the cooling medium into the second part.
US09307668B2

A housing for an electronic circuit for a fuel pump includes a base and a cover which is connected to the base, a printed circuit board and, disposed on one side of the latter, electric and/or electronic components. Disposed on the side of the printed circuit board on which the components are disposed is a self-contained metal strip. The components are arranged in the region surrounded by the strip. A cover is soldered to the self-contained strip in such a way that the printed circuit board forms a base, the cover forms a housing, and the printed circuit board has at least one blocking layer.
US09307663B2

An external operation detection structure body including: a sensor casing having an aperture window; an external operation detection sensor arranged at a formation zone of the aperture window; a sheet-like interface member that covers a front face of the detection sensor and closes the aperture window; an outer peripheral wall protruding out from a rear face of an outer periphery of the interface member and penetrating into the aperture window so as to be arranged between the detection sensor and the sensor casing; and front and rear face seal protrusions extending respectively from front and rear edges of the outer peripheral wall toward an outer peripheral side so as to be superposed respectively with front and rear faces of a peripheral edge of the aperture window of the sensor casing.
US09307656B2

A case configured to protect at least a portion of an electronic device. The case can comprise a first portion and a second portion that connect to one another via a hinge. The first portion can be configured to cover a first portion of a back side of the electronic device when fully installed on the electronic device. The second portion can be configured to cover a remaining portion of the back side of the electronic device when also fully installed on the electronic device. The second portion and the first portion can pivot with respect to one another via the hinge. Accordingly, by one approach, the second portion can be pivoted away from the electronic device while the first portion remains installed on the electronic device. In such a case, and by one approach, the second portion can serve as a stand for the electronic device.
US09307644B2

A connector assembly includes a socket connector which includes a socket housing, a plurality of first terminals spaced apart from each other in a first direction of the socket housing, and a first alignment unit which protrudes from the socket housing and is asymmetrically disposed with respect to a virtual line which passes through a center of the socket housing in a second direction perpendicular to the first direction, and a plug connector which is coupled to the socket connector and includes a plug housing, a plurality of second terminals spaced apart from each other in the first direction of the plug housing and respectively coupled to the plurality of first terminals, and a second alignment unit disposed on the plug housing and coupled to the first alignment unit.
US09307640B2

A circuit board for an image processing chip of a vision system of a vehicle is configured for a surface mount device to be attached thereto and includes at least one mounting location having a plurality of solder pads established thereat. The pads are arranged in a manner that enhances soldering of the device or component to the pad and circuit board. The pads may be arranged similarly in respective portions of the mounting location, such that the pads of one portion of the mounting location may be generally parallel to one another and may be generally orthogonal to the pads of another portion of the mounting location. Optionally, the pads may be generally tear-drop shaped, and the tear-drop shaped pads may be arranged so as to point generally towards or generally away from a center area of the mounting location of the circuit board.
US09307635B2

A touchscreen electrode pattern constituted by wavy conductive lines, each wavy conductive line includes multiple troughs of wave and multiple crests of waves, wherein an interval between adjacent troughs of waves in each wavy conductive line is larger than 1.5 times of a predetermined value, and an amplitude difference between adjacent trough of waves and crest of waves in each wavy conductive line is smaller than ⅓ times of the predetermined value.
US09307629B2

An electronic board comprises a plane printed circuit, a thermal drain and an expandable locking means positioned along one edge of the printed circuit comprising a part for transmission of movement and a part mobile in translation along an axis including a component perpendicular to the printed circuit. The part mobile in translation has at least one recess opening onto a face of the expandable locking means perpendicular to the printed circuit. The locking means is designed to rigidly fix the board in a chassis and to press the thermal drain against a face of the chassis. The printed circuit comprises a region which enters into the recess or recesses of the expandable locking means.
US09307616B2

A method, system and apparatus for dynamically monitoring and calibrating display tiles are provided. The apparatus comprises: an array of light emitting devices; one or more light emitting devices paired with light emitting devices of the array; one or more sensors configured to detect an optical characteristic and/or an electrical characteristic of the one or more paired light emitting devices; and, circuitry configured to: drive the array; drive each of the one or more further light emitting devices under same conditions as light emitting devices of the array; temporarily drive each of the one or more paired light emitting devices under different conditions from the array; and, adjust driving of the array based on the optical characteristic and/or electrical characteristic of the one or more paired light emitting devices detected at sensor(s) when the one or more paired light emitting devices are driven under the different conditions.
US09307611B2

An object is to enable application of forward/reverse voltage to or forward/reverse current to a display element and to lower power consumption of a driver circuit for driving a pixel. A memory storing the potential of a source signal line input through a switch, a first transistor whose gate is supplied with one output of the memory, a second transistor whose gate is supplied with the other output of the memory, a display element electrically connected to one of a source a drain of a first transistor and one of a source and a drain of a second transistor, a power source line electrically connected to the other of the source and the drain of the first transistor and the other of the source and the drain of the second transistor, and a counter power source electrically connected to the display element are included.
US09307610B2

A low power bypass circuit for use with a string of series-connected LEDs includes a semiconductor diode and resistor connected in series, which semiconductor diode and resistor combination become conductive upon the failure of an LED or upon the improper, reverse polarity connection of the string of series-connected LEDs to a power supply. When the semiconductor and resistor combination becomes conductive, a three-terminal gate-controlled semiconductor switching device becomes conductive, thereby bypassing the failed LED and protecting the integrity of the string of series-connected LEDs upon the improper reverse polarity connection of the string of series-connected LEDs to a power supply.
US09307608B2

A wavelength sensing lighting system that may comprise a light source included in an array to emit illuminating light, the array including a plurality of light sources, a sensor included in the array configured to sense environmental light from an environment, and a controller operatively connected to each of the sensor and the light source and may be configured to analyze the environmental light sensed by the sensor to at least one of detect and generate data relating to a condition of the environment, the data being transmittable in a data light. The controller may be configured to receive the data included in the data light using the sensor. The controller may be configured to analyze the data and to control the transmission of the data light from the light source. The controller may be configured to operate the array to emit an alert upon sensing an event.
US09307603B2

The present document relates to solid state lighting (SSL) devices. A driver circuit for phase-cut dimmable SSL based lighting assemblies is described. A control circuit for a power converter is provided. The power converter is configured to convert an input power derived from a mains power supply into a drive power for a light source. The control circuit comprises a dimmer mode detection unit to determine a first dimmer mode. The first dimmer mode indicates if the input power has been derived from the mains power supply using a dimmer. The control circuit comprises a state processor configured to determine a first operation mode of the power converter. The pre-determined first state information is dependent on the first dimmer mode. The control circuit comprises a first control unit configured to generate a first control signal for operating the power converter in accordance to the first operation mode.
US09307599B2

In one embodiment of lighting devices and lighting systems, the lighting device has a connection for connecting to a primary power supply and has a secondary power supply, such as a battery. A measuring circuit is operable to measure an impedance of the primary power supply connection and to determine from the measurement if a main power supply has failed, and if so whether to power light sources using power from the secondary power supply.
US09307597B2

System and method are provided for regulating a string current flowing through a string of one or more light emitting diodes. A system controller includes a first controller terminal, a second controller terminal and a third controller terminal. The first controller terminal is coupled to a base terminal of a bipolar junction transistor, the bipolar junction transistor further including an emitter terminal and a collector terminal, the collector terminal being connected to the string of one or more light emitting diodes. The second controller terminal is coupled to the emitter terminal of the bipolar junction transistor and to a first resistor terminal of a resistor associated with a resistance. The third controller terminal is coupled to a second resistor terminal of the resistor. In addition, the system controller is configured to receive a reference voltage, receive an emitter voltage, and output a base current.
US09307596B2

A light emitting module includes a plurality of light emitting device packages configured to be sequentially turned on or off according to the level of external drive voltage and connected to one another in series. Each of the plurality of light emitting device packages includes a light emitting cell having at least one light emitting device, and an on/off controller configured to control to turn the light emitting cell on or off.
US09307586B2

Techniques and corresponding circuitry and drivers are disclosed for improving power factor (PF) and total harmonic distortion (THD) of a flyback power factor correction (PFC) topology operating in transition-mode. In one or more embodiments, the PF and THD are improved by correcting the on-time of the switching element of the flyback PFC topology to actively shape the wave of the PFC input current. In some embodiments, the on-time is corrected using a phase-lock-loop module that synchronizes with the rectified input line voltage signal and a output regulator module that corrects the switch on-time. The control may be implemented using a digital or an analog controller.
US09307582B2

Provided is a microwave oven having a hood. The microwave oven having the hood includes a main body having a cooking chamber in which foods are cooked and a passage through which air containing contaminants flows, a hood casing disposed on a lower portion of the main body, a first hood taken out of the hood casing, and a second hood taken out of the hood casing at a position different from that of the first hood.
US09307574B2

There is provided a wireless communication system including a first wireless communication apparatus and a second wireless communication apparatus. In a specific case, the first wireless communication apparatus changes a state from a first state of being a master station of a first wireless network to a second state of being a slave station of a second wireless network in which the second wireless communication apparatus is a master station, and transmits target data to the second wireless communication apparatus using the second wireless network in which the first wireless communication apparatus is the slave station and the second wireless communication apparatus is the master station. The second wireless communication apparatus receives the target data from the first wireless communication apparatus using the second wireless network.
US09307571B2

A frequency offset calibrating method for use in a communication device connected to a communication system is provided. The method includes the following steps: determining a discontinuous reception cycle; awakening the communication device to a working mode from a sleep mode every discontinuous reception cycle and keep the communication device in the working mode for a first time period to receive a paging indication channel message from a communication network periodically; and awakening the communication device at a second time period other than the first time period during a first discontinuous reception cycle, thereby estimating an accumulated timing offset of a clock signal of the communication device and calibrating a frequency offset of the clock signal. In the invention, the accumulated timing offset of the clock signal can be calibrated efficiently to increase the reception performance of the page indication channel message with simple implementation and low hardware cost.
US09307570B2

Methods for controlling uplink transmission of data to a network node of a communications system a user equipment node are disclosed. The methods include receiving parameters to configure enhanced uplink in CELL_FACH state, determining whether the user equipment node is able to communicate on an E-DCH in CELL_FACH state and determining whether additional defined conditions have been satisfied, and performing a cell update operation to obtain an E-RNTI value responsive to determining that the user equipment node is not able to communicate on an E-DCH in CELL_FACH state. The methods may also include transmitting uplink data on an E-DCH transport channel to the network node responsive to determining that the user equipment node is able to communicate on an E-DCH in CELL_FACH state and determining that the additional defined conditions have been satisfied. Related user equipment nodes are also disclosed.
US09307569B2

Methods, apparatuses and computer readable media are described that adjust radio resource control connection states between a mobile wireless device and a wireless network following determination that a set of inactivity trigger conditions is met. Time periods between successive data messages and/or signaling messages transmitted to and/or received from a wireless access network are measured. When a prolonged period of data inactivity and/or signaling activity is determined, the mobile wireless device re-establishes an existing radio resource control connection to the wireless access network or releases the radio resource control connection to the wireless access network and transitions to an idle state.
US09307568B2

Configurations are described for maintaining a continuity and quality of wireless signal connection between a mobile device and systems accessible through the internet. In particular, configurations are disclosed to address the challenge of a mobile device that moves through a physical environment wherein the best wireless connectivity performance is achieved by switching between available connection sources and constantly evaluating a primary connection with other available connections that may be switched in to become a new primary connection. The mobile device may be self-propelled or carried by some other mobilizing means.
US09307564B2

The various aspects are directed to automatic device-to-device connection control. An aspect extracts a first sound signature, wherein the extracting the first sound signature comprises extracting a sound signature from a sound signal emanating from a certain direction, receives a second sound signature from a peer device, compares the first sound signature to the second sound signature, and pairs with the peer device. An aspect extracts a first sound signature, wherein the extracting the first sound signature comprises extracting a sound signature from a sound signal emanating from a certain direction, sends the first sound signature to a peer device, and pairs with the peer device. An aspect detects a beacon sound signal, wherein the beacon sound signal is detected from a certain direction, extracts a code embedded in the beacon sound signal, and pairs with a peer device.
US09307552B2

A User Equipment, UE, of a cellular communication system transmits scheduling assistance data to a base station comprising a base station scheduler which schedules uplink packet data. The scheduling assistance data relates to uplink packet data transmission from the UE. The UE comprises a channel controller which is operable to cause the scheduling assistance data to be transmitted from the UE to the base station in a first physical resource of an uplink air interface. The first physical resource is not managed by the base station based scheduler. The scheduling assistance data may specifically be transmitted in a first transport channel multiplexed with other transport channels on a physical resource. The transport channels may be individually optimized and may have different termination points and transmission reliabilities. Specifically, the transport channel supporting the scheduling assistance data signaling may have a high reliability and be terminated in the base station.
US09307551B2

Apparatuses may stay synchronized with a network via a beacon signal that is transmitted at a set interval. Various communication-related activities may be planned around an instance when a beacon signal is expected, or a target beacon transmission time (TBTT). While some networked apparatuses are active during every TBTT, other apparatuses may operate using a diluted beacon period that is an integer multiple of the network beacon signal interval. Diluted beacon intervals may initiate periods of time during which apparatuses may become “aware” of other apparatuses. Awareness may comprise information related to communication configuration, apparatus status, and services offered by the various apparatuses in the network. Awareness information obtained during an awake window may also comprise information on data-related tasks that are pending in one or more apparatuses which may allow for the control of further data conveyance activities.
US09307534B2

A radio communication apparatus includes a control unit that, if a radio access bearer (RAB) for a circuit switching domain is reconfigured between a dedicated channel (DCH) and enhanced uplink dedicated channel/High Speed Downlink Packet Access (E-DCH/HSDPA) and an RAB corresponded to RAB information exists as an established RAB and there exists no transparent mode (TM) radio bearer for a core network (CN) domain included in an information element of CN domain identity (ID), and at least one TM radio bearer is included in an information element of radio bearer (RB) information to setup, calculates a start value that is used on a new RAB.
US09307533B2

A wireless communication apparatus which can simultaneously conduct communication on at least two frequency channels is described. The apparatus includes a communication unit which refers to a connection management table to determine a communication system which can be used by a wireless communication terminal using an identifier of the wireless communication terminal, and conducts communication with the wireless communication terminal on a second frequency channel using the communication system, when a request from the wireless communication terminal to change the first frequency channel to the second frequency channel is permitted.
US09307530B2

The present invention relates to a wireless communication system. More particularly, the present invention relates to a method in which a terminal transmits control information in a CA-based wireless communication system and to an apparatus for the method, the method comprising: a step of configuring a first cell and a second cell having different subframe configurations, the second cell has UL-DL configuration #0; a step of receiving a downlink control information (DCI) format including an N-bit field (N>1), for the second cell; and a step of transmitting a physical uplink shared channel (PUSCH) signal corresponding to the downlink DCI format through a subframe. The N-bit field indicates either an uplink (UL) index or a downlink assignment index (DAI). For PUSCH timing, in cases where a reference UL-DL configuration applied to the second cell is any one of UL-DL configurations #1 to #6, the N-bit field indicates the DAI.
US09307522B2

A system and method are provided for implementing a cloud based spectrum management scheme that enables Dynamic Spectrum Access (DSA) through rentals of available spectrum in a two-level analytics process for optimization. Primary spectrum holders as exclusive licensees of underused spectrum communicate with a global spectrum broker to place portions of their underused spectrum into an auction-based rental market on the condition that they can regain control of their spectrum when a need arises. Local spectrum brokers communicate with the global spectrum broker to bid for available spectrum to meet their temporary needs in time and place. The local spectrum brokers, in turn, administer local optimization schemes over their portion of the global region to ensure that an expected level of quality of service is provided to individual customers with whom the local spectrum brokers communicate. The disclosed brokering scheme, properly administered, provides an incremental step-wise approach to solving long-term spectrum shortage for wireless communications.
US09307519B2

A method is provided for paging a mobile station (40) served by a wireless telecommunications network (A). The method includes: remembering a last known location of the mobile station (40), and implementing a first paging strategy for the mobile station (40) within a first collection of cells (32) served by a first mobile switching center (20). If a response to the first paging strategy is not received by the first mobile switching center (20), then the method further includes: selecting one or more cells (32) served by a second mobile switching center (22) based upon the last known location of the mobile station (40); identifying the selected cells (32) in an intersystem paging request; forwarding the intersystem paging request from the first mobile switching center (20) to the second mobile switching center (22); and, in response to the second mobile switching center (22) receiving the intersystem paging request, paging the mobile station (40) in those cells (32) served by the second mobile switching center (22) which are identified in the intersystem paging request.
US09307517B2

Systems and methods to provide connectivity by a user device to a WiFi network based at least in part on determining the location of the user device are disclosed. The user device may determine its current location and send a location message indicating its current location to a mobile network server via a mobile communication network. The mobile network server may determine if there are available WiFi access points at the current location of the user device. If the mobile network server determines that there is an available WiFi access point to which the user device may connect at its current location, then the mobile network server may communicate association information of that WiFi network to the user device. The user device may receive the association information and connect to the available WiFi access point using the association information. The user device may turn on its WiFi radio prior to connecting to the WiFi access point. Once connected, the user device may seamlessly transition any applications running thereon to use communications bandwidth from the WiFi network from using communications bandwidth of the mobile communications network.
US09307511B2

A base station registers a mobile station subjected to the call reception control of the base station. When connection between the mobile station registered by the base station and a higher-level device of the base station is terminated after detecting that the mobile station is located in a communication area of the base station, the base station causes the higher-level device to maintain information indicating that the mobile station is located in the communication area, without notifying the higher-level device of termination of the connection. When a call addressed to the mobile station is detected after termination of the connection between the mobile station and the higher-level device, the base station gives a notification about detection of the call.
US09307508B2

Embodiments are provided for syncing multiple electronic devices for collective audio playback. According to certain aspects, a master device connects (218) to a slave device via a wireless connection. The master device calculates (224) a network latency via a series of network latency pings with the slave device and sends (225) the network latency to the slave device. Further, the master devices sends (232) a portion of an audio file as well as a timing instruction including a system time to the slave device. The master device initiates (234) playback of the portion of the audio file and the slave devices initiates (236) playback of the portion of the audio file according to the timing instruction and a calculated system clock offset value.
US09307488B2

A system for providing a wireless device with access to a computer network includes an access point that sets up a radio link with the wireless device and couples the wireless device to the network. The system also includes a server that receives data packets from the access point through the computer network. The data packets include at least one data packet that has a first identifier that uniquely identifies the wireless device and a second identifier that corresponds to the wireless device. The system further includes a database that is coupled to the server and stores data for associating a service plan with the first and second identifiers and basing the service plan, at least in part, on the second identifier. Other features and systems are also disclosed.
US09307484B2

A scanning method in a wireless local area network (WLAN) system is provided. The scanning method includes transmitting by a station a probe request frame via a channel, and receiving by the station a probe response frame from a target access point (AP) to respond to the probe request frame. The probe request frame includes at least one of information regarding a response reception time and preference information regarding the target AP.
US09307482B2

Systems and methods for accessing a contention-based communications network are provided. In systems and methods for accessing a contention-based communications network, an access point in the network is created. The access point is a first node connected to the network configured to receive a request from a second node to gain access to the network. A power of a signal transmitted between the access point and the second node is measured. A probability that the second node will access the network is determined based on the measured power of the signal transmitted between the access point and the second node. A determination of whether to permit the second node to gain access to the network is made based on the determined probability.
US09307481B2

A method for selectively reading system information is provided. The method can include a wireless communication device reading system information broadcast by a first cell in a cell group. The read system information can include cell group information identifying the first cell as a member of the cell group and indicating membership of the cell group. The method can further include the wireless communication device moving to a second cell; determining based on the cell group information that the second cell is a member of the cell group; and in response to determining that the second cell is also a member of the cell group, reading only a portion of system information broadcast by the second cell. The read portion of system information can include the system information broadcast by the second cell that is different from the system information broadcast by the first cell.
US09307476B2

Embodiments of user equipment (UE) and method for pico-cell attachment and attachment inhibiting are generally described herein. In some embodiments, the UE may determine an angle threshold, calculate an angle between a moving direction and a direction toward the target pico eNB, permit pico-cell attachment if the calculated angle is less than or equal to the angle threshold and inhibit pico-cell attachment when the calculated angle is greater than the angle threshold. In some angle-limitation embodiments, the UE may be configured to receive the angle threshold that is broadcasted by a target pico eNB using the SIBs which may be transmitted on the DL-SCH. In some minimum-distance threshold embodiments, the UE is configured to calculate the angle threshold from a distance threshold and a distance to a target pico eNB.
US09307470B2

Single radio handovers (SRHOs) between heterogonous networks can be facilitated using several techniques. One such technique includes activating a receiver of a target radio interface in a mobile node without activating a transmitter of the target radio interface, thereby allowing the mobile node to perform target network discovery while the transmitter of the target radio interface remains deactivated. Another such technique includes encapsulating link-layer discovery frames into media independent handover frames (MIH), and then tunneling the MIH frames over a tunnel extending through the source network. This may allow the MN to achieve various handover related tasks without activating the target radio link. Another technique includes establishing a schedule (or delay period) for synchronizing deactivation of the source radio interface with activation of the transmitter in the target radio interface.
US09307465B2

A femto cell is located within a macro cell of a wireless communication system. A method of identifying the femto cell comprises: determining at least one timing difference, the at least one timing difference being observed for communications between a wireless communication unit and each of a femto cell and at least one macro cell; and comparing the at least one observed timing difference to reference timing difference data. The identity of the femto cell may allow the location of the femto cell to be set as a geographical location for a wireless communication device that is within the footprint of the femto cell. The identity of the femto cell may allow hand in of an ongoing call, from the macro cell to the femto cell.
US09307464B2

A method for handover of a wireless subscriber communication unit from a first base station to a second base station in a wireless network is described. The method comprises at the wireless subscriber communication unit receiving a handover command message from the first base station. At the first base station, the method comprises sending a scheduling request message to the second base station, in response to an acknowledgement message sent from the wireless subscriber communication unit. The method further comprises, at the second base station, scheduling, in response to the scheduling request message, at least one uplink scheduling resource (UL-SCH) for the wireless subscriber communication unit to transmit a handover (HO) confirmation message to the second base station; and receiving a handover confirmation message from the wireless subscriber communication unit on the at least one uplink scheduling resource (UL-SCH).
US09307463B2

A user equipment UE determines that a neighbor cell is higher priority than a serving cell, measures neighbor cell signal strength in n>1 iterations, and analyzes them for reselecting from the serving cell to the neighbor cell. Each measurement iteration is spaced from one another by a time interval (e.g., 1 DRX) that is specific for the neighbor cell being higher priority. In various embodiments, the UE measures while in a Cell-PCH, URA-PCH or idle state/mode and the first iteration is taken at the first available measurement opportunity after transitioning to that state/mode. The UE reselects to the neighbor cell based on the analyzed signal strengths; in one embodiment the decision to reselect is without regard to signal quality of the serving cell; and in another the decision is without regard to whether a reselection condition remains satisfied for a specified time period Treselection.
US09307462B2

Devices and methods for improving performance in a network with geographically separated antenna ports based on determining arid reporting reference signal power from a communication device to a base station are provided. In one aspect, the difference between received reference signal power values is used in determining a reported reference signal power value, such as reference signal received power (RSRP) in a Multiple-Input Multiple-Output (MIMO) network including geographically separated antenna ports transmitting on cell-specific reference signal (CBS) ports 0 and 1. Devices and methods for measuring and reporting per-port reference signal power values are provided.
US09307456B2

The present invention relates to a method for a terminal to report system information in a wireless communication system. The method includes: transmitting a previously-obtained system information availability indicator that indicates to a serving cell that there is previously obtained system information on a neighboring cell; and receiving a system report request from the serving cell; and transmitting a system information report to the serving cell in response to the system report request. The system report request includes a previously obtained system information report request indicator. When the previously obtained system information report request indicator indicates that there is a report on the previously obtained system information, the system information report includes the previously obtained system information and the previously obtained system information is system information obtained from the neighboring cell before the system report request is received.
US09307448B2

Systems and methods for distributed computing between communication devices. A femto node is treated as a trusted extension of a user equipment and performs processing tasks on behalf of the user equipment. The femto node is also treated as a trusted extension of network servers and performs services on behalf of the network servers. Tasks are thus distributed between the network servers, the femto node and one or more user equipments. The tasks include processing data, filtering incoming messages, and caching network service information.
US09307443B2

A system for remotely controlling mobile communication devices includes a redirection system, a remote control system and a mobile data communication device. The redirection system detects a triggering event at a host system and in response to the triggering event continuously redirects data items from the host system to a wireless network. The mobile data communication device receives data items from the wireless network and executes a plurality of device operations. The remote control system receives control information from a user interface and transmits the control information through the redirection system to the wireless network. The control information is received and executed by the mobile data communication device to remotely control one or more of the device operations. Methods of controlling the operation of mobile data communication devices are also disclosed.
US09307435B2

Determining a distribution delay of a bearer by using a preset delay distribution algorithm according to a preset time period for reporting a cell status; starting a periodic timer of the bearer after the distribution delay elapses, where the periodic timer uses the time period as a period; determining, according to the periodic timer, whether the cell status needs to be reported; and carrying information of the cell status in an uplink data packet of the bearer if the cell status needs to be reported. Thereby avoiding greatly centralized reporting of the cell status and centralized policy adjustment that is performed for the bearers, so that great jitter of service traffic borne on a cell is controlled effectively.
US09307433B2

A mobile communication method according to the present invention includes a step of transmitting, by a mobile management node MME, “Measurement Configuration #1” for instructing to measure and report a desired radio quality to a radio base station eNB#1 that manages a cell #1 when it is detected that a mobile station UE has moved into the cell #1 that lies inside a measurement-target area, and a step of transmitting, by the radio base station eNB#1, “RRC Connection Reconfiguration” including the “Measurement Configuration #1” to the mobile station UE.
US09307425B2

Provided in embodiments of the present invention are a method and a device for transferring data. The method includes: transferring data to a base station via a first link, a second link offloading for the first link; if a radio link failure (RLF) occurs on the first link, transmitting an RLF indication message to the base station, where the RLF indication message is used to notify the base station that the RLF occurs on the first link; and transferring, over the second link, at least a portion of the data on the first link. According to embodiments of the present invention, when a link failure occurs between a user equipment and the base station during a mobile data offloading process, data transfer is performed via the offloading link, a time delay can be reduced and the data transfer efficiency is improved.
US09307413B2

In a wireless or hybrid mesh communication system, radio frequencies are managed by assigning an in-use frequency channel to each local family of nodes, distributing spare frequency channel(s) among the local families of nodes, and changing the in-use frequency channel of at least one selected local family of nodes to a new frequency channel selected among its spare frequency channel(s), if any, or among the spare frequency channel(s) of another local family of nodes if said at least one selected local family of nodes has no spare frequency channel(s), and/or as the in-use frequency channel of another local family of nodes if none of said local families of nodes has spare frequency channel(s).
US09307412B2

A method for evaluating security during an interactive service operation by a mobile communications device includes launching, by a mobile communications device, an interactive service configured to access a server over a network during an interactive service operation, and generating a security evaluation based on a plurality of trust factors related to a current state of the mobile communications device, to a security feature of the application, and/or to a security feature of the network. When the security evaluation is generated, an action is performed based on the security evaluation.
US09307410B2

A method is disclosed which involves using an identifier which may be stored in an electronic component of a vehicle. A short range, wireless protocol connectivity system of the vehicle may establish a wireless link with a personal electronic device (PED) of a user when the user enters the vehicle with the PED powered on. The link may be used to automatically transmit the identifier to the PED. The PED then transmits the identifier to a remote authorization source which checks if the identifier is valid and, if so, sends an unlock code back to the PED. The PED uses the unlock code to unlock an application on the PED which enables access to the remote content source.
US09307406B2

An apparatus and a method for access authentication of a mobile station in a wireless communication system are provided. The method includes receiving a session certificate for the access authentication from a core network, transmitting the session certificate to a new access network during a handover to the new access network, and receiving an authentication result based on the session certificate from the new access network.
US09307399B2

A process for detecting and connecting a GPS-enabled device to available in-range wireless local area networks (WLANs), particularly while the device is in motion. Once connected, the GPS enabled device sends and receives data and other information from a web service or software application. The process includes detecting relative movement speed of the GPS device and repeatedly attempts connections with new WLAN access points when in motion, particularly in excess of five miles per hour and/or twenty-five miles per hour.
US09307398B2

An access point that implements operating modes in which beacons may be selectively disabled. Beacons may be disabled when no device is actively associated through the access point. Beacons may be enabled in response to one or more triggers, which may include events such as a client forming an association through the access point following a probe request message identifying the access point. In addition, active beaconing may be triggered by user input or may occur during periodic brief intervals that allow client devices to discover the network identifier for the access point. Selective control of beaconing may lead to more effective wireless communication, particularly in areas where users congregate with computers implementing soft APs for personal networks.
US09307395B2

Mobile devices band together in an ad hoc grouping based on their location. As the mobile devices travel, their users may have a shared, mutual goal at a common location. The mobile devices having the common location are invited to join the ad hoc grouping. Should any of the mobile devices accept and join the ad hoc grouping, the users may act as a cohesive unit and bid to achieve their shared, mutual goal.
US09307391B2

A system and a method is provided for managing the mobility of a mobile network in a Proxy Mobile Internet Protocol (PMIP) environment operating under the Dynamic Host Configuration Protocol (DHCP) protocol. The method is based on prefix allotment between a server DHCPv6 and a mobile router via an access gateway (MAG) and the exchanging of messages between the server and a point of attachment (LMA).
US09307384B2

A subscriber of the Emergency Alert System (EAS) receiving an EAS alert message can obtain additional multimedia information in based upon the location of the subscriber. The additional multimedia information can include information pertaining to available shelter, medical facilities, the location of emergency supplies, a plume map, evacuation routes, or the like. In an example embodiment, the Global Positioning System or other device location systems is utilized to determine the location of the subscriber. The location information along with EAS alert information is used to query a database to obtain the additional information.
US09307373B2

A method for establishing a connection to a sequence-accessible call includes gathering connection data for establishing the connection to the sequence-accessible call including a phone number dialed to access the sequence-accessible call. The method may also include storing the connection data in a database, determining a presence of a proximity link, and transmitting the connection data to an information handling system.
US09307371B2

The method and system for SMS/MMS messaging to a connected device may be realized as a system comprising at least one server module. The at least one server module may be adapted to receive from a connected device an outbound messaging message through a packet-based network. The at least one server module may also be adapted to send the outbound messaging message to an external messaging network. The connected device may be communicatively coupled to the packet-based network. The outbound messaging message may be associated with a user account. The user account may be associated with a telephone number.
US09307368B1

Systems and techniques for automatically obtaining data indicating the locations of wireless devices and physical objects within a region are provided. An autonomous mobile platform may survey a region with a wireless signal strength sensor and/or a physical environment sensor. The signal strength data and the spatial data are used to generate a map that indicates the locations of wireless devices within a region such as a home or office. The map may be automatically generated and/or updated in the course of other operations performed by an autonomous mobile platform.
US09307367B2

The invention relates to a user-portable electronic device and in particular one which is capable of establishing transmission connection with one or more mobile electronic devices. A user-portable electronic device comprising: transmission connection circuitry arranged to establish transmission connection between the user-portable electronic device and one or more mobile electronic devices; geographic-location determining circuitry arranged to determine a geographic location of the or each mobile electronic device associated with transmission connection of the user-portable electronic device and the or each mobile electronic device; and log circuitry arranged to allow storage of a geographic-location log including at least a last-known geographic location of the or each mobile electronic device.
US09307359B2

Methods, systems, and apparatus for defining, generating, utilizing, and/or detecting a geo-fence are described. A trigger is obtained, the trigger generated in response to a change in a geo-fence criteria. One or more boundaries of the geo-fence based on the geo-fence criteria are defined in response to obtaining the trigger.
US09307357B1

Embodiments of the invention generate metrics quantifying the mobility of a mobile device without persisting information related to the device's specific location at any given time. Specifically, at multiple intervals, a value of a mobility metric is computed based on the distance between the current location of the mobile device and a previously identified origin location of the mobile device. The values of the mobility metric computed over a period of time quantify the overall mobility of the mobile device. The mobility metric does not provide any information regarding the specific location of the mobile device at any given time.
US09307342B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for dynamic rendering for hybrid apps. One of the methods includes receiving user input navigating to a first view of an application; determining, using a navigation hierarchy stored on the mobile device, to render the first view using a native rendering engine native to the mobile device; receiving an update to the navigation hierarchy from a server; after receiving the update, receiving user input navigating to the first view; and determining, using the update to the navigation hierarchy from the server, to render the first view using an open rendering engine that is not native to the mobile device.
US09307340B2

A method, an apparatus, a system, and instructions stored in a non-transitory computer-readable medium to instruct a processing system to carry out the method. The method includes applying corrective filters directly in a portable media device to correct, e.g., equalize for the overall system comprising the portable media device and the playback system to which it is attached. Also a method of determining the corrective filters by playing back one or more calibration signals on the playback system while recording the resulting sound field on the portable media device.
US09307323B2

A system and method for enhancing the real and/or perceived bass band of an audio signal is disclosed. A computationally simple yet effective bass band enhancement system for use in consumer electronics applications is disclosed. An audio processing system including bass enhancement functionality for use in a mobile audio system is disclosed.
US09307320B2

A feedback suppression system for reducing acoustic feedback may include a controller configured to buffer a series of incoming digital sample signals to provide a plurality of buffered signals, the incoming digital sample signal being indicative of an audio input signal that includes audio data and acoustic feedback, determine a complex spectrum of the plurality of buffered signals, determine a magnitude squared spectrum from the complex spectrum, identify at least one peak in the magnitude squared spectrum, identify a frequency of the at least one identified peak using a phase enhanced frequency estimate, and set a notch filter at the identified frequency to eliminate the acoustic feedback of the audio input signal.
US09307314B2

Disclosed is an electronic device including: a housing having a sound emission hole formed in at least one side thereof; a speaker module which is at least partially accommodated in the housing; and a sound reflection surface formed inside the housing and obliquely facing the speaker module. A sound emitted from the speaker module can be reflected by the sound reflection surface to the sound emission hole. The side acoustic emission type speaker device and the electronic device including the same can be variously implemented.
US09307309B2

An in-line sound module for a modular stack light system provides electrical and mechanical connectors to allow it to be placed anywhere in the stack. Axial orientation of the audio transducer and a flexible jumpering system allow preservation of central connectors between modules. In-line configuration permits multiple sound modules to be used in a stack light and to be teamed with different beacon modules. In one embodiment the in-line sound module may also include lamps to provide beacon functionality.
US09307308B2

This application relates to methods and apparatus for waterproofing an electronic device having an audio output. More particularly a method for dynamically forming an acoustic volume of air for a speaker component is disclosed. The dynamically formed acoustic volume creates a sealed volume of air that prevents moisture from entering a portion of the device that includes moisture sensitive components. By dynamically forming the acoustic volume during a blow forming operation, the acoustic volume can utilize unused space within the electronic device in a highly efficient manner by occupying small areas of unused space that would otherwise go unused.
US09307307B2

A portable speaker system includes: a waterproof enclosure; a wireless communication element enclosed within the waterproof enclosure, the wireless communication element able to receive audio data from a mobile device; a pair of speakers enclosed within the waterproof enclosure that are able to generate an audio output based on the audio data received from the mobile device; and a set of connection ports located within a first recessed area of the waterproof enclosure, the first recessed area including a flexible cover that is able to expose the first recessed area when in an open position and form a waterproof seal with the waterproof enclosure when in a closed position.
US09307305B2

The present invention discloses a smart ODN system of low power consumption, and the system is related to the ODN field and includes a smart management terminal, a master control management board, and several wiring management boards, where the smart management terminal is directly connected to the master control management board, and is also connected to the master control management board through the Internet and a mobile terminal, the master control management board is connected with several wiring management boards, each wiring management board includes a PMU and a PQU, which are independent from each other, the PQU is connected to a CPU of a wiring management board through a control line; the PMU is configured to collect and store information data of a port and communicate with the master control management board or the smart management terminal; the PQU independent from the CPU independently performs the query operation on a wiring port, and promptly obtains a port connection status. The present invention more than doubles operation time of a smart ODN management system, extends battery life of the whole system when a mobile power supply provides power for the system, shortens a time span taken by the system to respond to port changes, and improves operation efficiency of the system.
US09307303B2

The present invention discloses a method and system for communication. The method includes: according to a network resource and a signal type of a label switched path to be established, generating, by a first optical communication device, a label indicating that a first optical channel data unit is multiplexed to a second optical channel data unit, wherein the label comprises a tributary slot assignment indication field indicating a tributary slot occupied in the second optical channel data unit, and a length of the tributary slot assignment indication field is equal to the number of tributary slots of the second optical channel data unit; sending the label to a second optical communication device; obtaining, by the second optical communication device, the label; and multiplexing, by the second optical communication device, the first optical channel data unit to the second optical channel data unit based on the label.
US09307301B2

The discloser provides a multi-input and multi-output optical switch capable of switching over all WDM wavelengths. An optical switch according to one embodiment includes: an optical demultiplexing element (3) that demultiplexes an optical signal from at least one input port into individual wavelengths; a first optical deflection element (5), which deflects an incident optical signal, that deflects the wavelength-separated optical signal incoming from the optical demultiplexing element to change a traveling direction for each wavelength to a switch axis direction perpendicular to a wavelength dispersion axis direction; a second optical deflection element (8) that deflects the optical signal incoming from the first optical deflection element to change the traveling direction to the switch axis direction for output to at least one of the output ports; and an optical multiplexing element (10) that multiplexes the optical signal with the different wavelengths incoming from the second optical deflection element.
US09307300B2

A method and device for transmitting a tracking signal for locating a projectile. A launch condition for a projectile is sensed by a tracking device. The tracking device enters a first transmission mode in which a first signal is transmitted in response to sensing the launch condition. The tracking device transitions to a second transmission mode in which a second signal is transmitted after transmitting the first signal for a defined period of time.
US09307295B2

Mechanisms are provided for allowing a user to linearly or non-linearly discover and navigate media content including live events. A smart timeline includes panels of event information, previews, images, etc. Moving ahead allows discovery of future live media content and events and uncovers mechanisms for setting notifications and reminders. Moving back in time allows discovery of past events and mechanisms for replaying past video and audio content. Event navigation mechanisms can be integrated with calendaring applications to post and select events discovered using event navigation mechanisms.
US09307293B2

One embodiment of the present invention provides a system for sharing annotated videos. During operation, the system establishes a real-time video-sharing session between a remote field computer and a local computer. During the established real-time video-sharing session, the system receives a real-time video stream from a remote field computer, forwards the real-time video stream to a local computer to allow an expert to provide an annotation to the real-time video stream, receives the annotation from the local computer, and forwards the annotation to the remote field computer, which associates the annotation with a corresponding portion of the real-time video stream and displays the annotation on top of the corresponding portion of the real-time video stream.
US09307291B2

A method for providing configurable access to media in a media-on-demand system also can include delivering the media to a first client device in a format compatible with the first client device; interrupting the delivery of the media; recording a bookmark specifying a position in the media where the interruption occurred; and resuming delivery of the media to a second client device, the resumed delivery beginning at a position in the media specified by the recorded bookmark. The method further can include identifying device properties for each of the first and second client devices; delivering the media to the first client device in a format compatible with the identified device properties for the first client device; and, delivering the media to the second client device in a format compatible with the identified device properties for the second client device.
US09307284B2

A digital television (DTV) receiver for processing a DTV signal, the DTV receiver includes a receiver to receive a digital television signal including a plurality of extended text table (ETT) instances that appear in transport stream packets with common PID values, the ETT instances having common table ID values, each ETT instance comprising a section header and a message body, the section header containing a table identification (ID) extension field that serves to establish uniqueness of each ETT instance, the message body containing an extended text message (ETM) which provides detailed descriptions of a virtual channel or an event associated with each ETT instance, wherein the section header further contains a last section number field, wherein the ETT instance further contains a CRC 32 field, a demodulator to demodulate the digital television signal, and an identifier to identify at least one pertinent ETT instance from the plurality of ETT instances.
US09307282B2

A virtual channel table for broadcasting protocol and a method for broadcasting by using the virtual channel table includes identification information identifying and permitting discrimination of active and inactive channels contained in the virtual channel table. At a receiver, the virtual channel table transmitted from the transmitting side is parsed, thereby determining whether the current received channel is an active or inactive channel.
US09307280B2

A broadcast receiving device and a method for receiving a broadcast thereof are provided. The broadcast receiving device includes a channel receiving unit which receives a channel broadcasting signal, generates a first parallel signal from the received channel broadcasting signal, converts the parallel signal into a serial signal, and outputs the serial signal; and a main body unit which receives the serial signal output from the channel receiving unit, reconverts the received serial signal into a second parallel signal, processes the second parallel signal, and outputs a video signal, an audio signal, and an additional data signal extracted from the processed second parallel signal. Since the channel receiving unit is provided as a separate unit from the main body unit, the thickness of the broadcast receiving device can be further reduced.
US09307278B2

A media recording system may be provided. The recording system may include features for reducing recording cut-off of a particular media event due to changes in the start time and end time of what is scheduled to be recorded. The recording system may provide a user with an opportunity to select a program by for example, selecting a listing, to have that program automatically recorded at a scheduled time for presentation to viewers. Changes in the schedule of programs may be compensated manually or automatically when the recording system receives information about actual or predicted time changes. In a manual mode, a user may adjust start or end times based on time change information that is displayed. For an automatic mode, the recording system may automatically compensate for predicted or actual time changes that are known by automatically adjusting the start and end times of recording.
US09307276B2

The present invention concerns a method for processing messages intended to allow the access to conditional access content and to a security module arranged for implementing this method. The method comprises the steps of receiving by a security module comprising at least one decryption module, a plurality of messages, these messages belonging to at least two different categories; assigning a different priority level to messages from each different category, one of said priority level being defined as high and another priority level, lower that the high priority level, being defined as the standard priority level; associating a value to the messages to which the standard priority level has been assigned; assigning at least one threshold value for the value associated with messages having a standard priority level; and comparing between the threshold value for a determined message and the value associated with said message. If no value associated with said message having standard priority level exceeds the corresponding threshold value, processing the messages according to their priority level, a message to which the high priority level has been assigned being processed before a message to which a lower priority level has been assigned, and change of the value associated with the messages having a standard priority level according to said predefined rule. If the value associated with one of said messages having a standard priority level exceeds the threshold value for the corresponding message, processing one of the messages having a standard priority level before processing a message having a higher priority level, and change of the value associated with the messages having a standard priority level according to said predefined rule.
US09307269B2

A video is analyzed to identify interest level for a plurality of frames. The interest level is determined based on analysis of the content of each of the plurality of frames or how often other clients view the frames or take actions while viewing the frames. Frames are clustered and key frame locations are determined for each of the clusters. Key frames are given a higher buffering priority than non key frames. Buffering of key frames is prioritized based on key frame interest level. Key frames are also utilized to enable a client to skip forward or backward between key frames and view content that is likely to be of interest to the user.
US09307257B2

In a decoder, a desired image is estimated by first retrieving coding modes from an encoded side information image. For each bitplane in the encoded side information image, syndrome bits or parity bits are decoded to obtain an estimated bitplane of quantized transform coefficients of the desired image. A quantization and a transform are applied to a prediction residual obtained using the coding modes, wherein the decoding uses the quantized transform coefficients of the encoded side information image, and is based on previously decoded bitplanes in a causal neighborhood. The estimated bitplanes of quantized transform coefficients of the desired image are combined to produce combined bitplanes. Then, an inverse quantization, an inverse transform and a prediction based on the coding modes are applied to the combined bitplanes to recover the estimate of the desired image.
US09307251B2

Aspects of the present invention are related to systems and methods for determining local-analysis-window size and weighting parameters in a gradient-based motion estimation system.
US09307245B2

An updated region encoding unit detects an updated region in a frame of an inputted image signal and encodes the updated region. A retransmission candidate tile extracting unit extracts from within a screen a tile which does not belong to an updated region in a current frame and which is a partial region transmitted after encoded with a quality equal to or less than a first quality. A character likelihood estimating unit, with respect to a tile extracted by the retransmission candidate tile extracting unit, calculates a likelihood value indicating likelihood that the tile is a character region. A character-likelihood-order intra update unit selects a tile in decreasing order of the likelihood value from among tiles extracted by the retransmission candidate tile extracting unit, and encodes the tile with a second quality which is higher than the first quality and transmits the result.
US09307241B2

The present application provides a video encoding method that includes setting frame types for a video sequence; obtaining a B frame; determining whether a current macroblock of the B frame satisfies a Direct prediction mode, and if yes determining whether the current macroblock satisfies a Skip prediction mode; if the current macroblock does not meet either mode, computing at least one of a mode cost after performing motion compensation on the current macroblock using two bidirectional prediction motion vectors obtained in the Direct prediction mode; a mode cost after performing motion compensation on the current macroblock using a forward prediction motion vector obtained in the Direct prediction mode; and a mode cost after performing motion compensation on the current macroblock using a backward prediction motion vector obtained in the Direct prediction mode; and selecting a mode with a smallest cost as an optimal prediction direction to encode the current macroblock.
US09307234B1

The system may capture an image comprising an original image size. The system may further determine an optimal size for the image based on a connection bandwidth and/or connection latency. The system may also compress the image to reduce an image size locally until the image size is less than or equal to the optimal size, before transmitting the image with the optimal size to the receiver while controlling latency in image transmission.
US09307233B2

A method characterizes manufacturing imperfections in a camera and variations in its operating environment to allow images captured by the camera to be compensated for these defects. The method includes: (a) illuminating a field of view of the optical elements under a controlled condition; (b) exposing multiple images onto the image sensor under the controlled condition; (c) extracting from the multiple images parameter values for pixels of the image sensor; and (d) compensating images taken subsequently in the camera using the parameter values. The controlled condition includes an external light source for illumination, and the image sensor is sensitive to color components.
US09307221B1

Systems and methods are disclosed for identifying depth refinement image capture instructions for capturing images that may be used to refine existing depth maps. The depth refinement image capture instructions are determined by evaluating, at each image patch in an existing image corresponding to the existing depth map, a range of possible depth values over a set of configuration settings. Each range of possible depth values corresponds to an existing depth estimate of the existing depth map. This evaluation enables selection of one or more configuration settings in a manner such that there will be additional depth information derivable from one or more additional images captured with the selected configuration settings. When a refined depth map is generated using the one or more additional images, this additional depth information is used to increase the depth precision for at least one depth estimate from the existing depth map.
US09307217B1

An apparatus includes a camera, a memory, and a control circuit. The camera may be configured to generate a first video stream having a first bitrate and a second video stream having a second bitrate. The second bitrate may be lower than the first bitrate. The memory may be configured to store the first video stream and the second video stream. The control circuit may be configured to upload the second video stream from the memory to a user device via a wireless protocol in response to at least one predetermined emergency-related event.
US09307216B2

In a video display apparatus A, a controller 9, while displaying video processed by a video processor 4 on a video display 3, displays LUTs 45R, 45G, and 45B which are tables of correction data for correcting luminance levels of red, green, and blue respectively. The controller 9 re-calculates and rewrites the correction data based on one adjustment point or two or more adjustment points P1 and P2 adjusted by the user.
US09307209B2

A lighting system for a digital cinema projection apparatus is provided. The lighting system includes an ultra high pressure mercury lamp, a relay lens group, a digital micro display module, an optical filter module, and a projection lens. The ultra high pressure mercury lamp is used for emitting a light beam. The relay lens group is used for receiving the light beam and adjusting an optical path of the light beam. The optical filter module is arranged along the optical path of the lighting system for optically modulating an optical spectrum and/or a white balance of the light beam from the ultra high pressure mercury lamp. The projection lens is used for projecting the modulated light beam as an image beam.
US09307208B2

There is provided a computer-implemented method for solving inverse imaging problems to compensate for distortions in an image. The method comprises: minimizing a cost objective function containing a data fitting term and one or more image prior terms to each of the plurality of channels, the one or more image prior terms comprising cross-channel information for a plurality of channels derived from the image.
US09307207B2

A method for generating a glare-reduced image from images captured by a camera device of a subject vehicle includes obtaining a short-exposure image and a long-exposure image and generating a resulting high dynamic range image based on the short-exposure and long-exposure images. Pixel values are monitored within both the short- and long-exposure images. A light source region is identified within both the short- and long-exposure images based on the monitored pixel values. A glaring region is identified based on the identified light source region and one of calculated pixel ratios and calculated pixel differences between the monitored pixel values of the long- and short-exposure images. The identified glaring region upon the resulting high dynamic range image is modified with the identified light source region within the short-exposure image. The glare-reduced image is generated based on the modified identified glaring region upon the resulting HDR image.
US09307206B2

An improved automatic image capture system for an intelligent mobile device having a camera guides a user to position the camera so only a single image needs to be automatically captured. Syntactic features, using a view finder on a display of the intelligent mobile device, are used to guide a user to maximize the occupancy of the view finder with the document so that the document is maximized within the view finder based upon detected corners of the document. When occupancy is maximized, the camera automatically captures the image of the document for post-processing using semantic knowledge of the document. A confidence level is computed based on the semantic knowledge to qualify an image with greater accuracy, and without user intervention, prior to transmission to a remote site.
US09307201B2

A counterpart terminal information management system (50) includes: a terminal manager (5002) that manages, for each one of a plurality of terminals (10), terminal identification information for identifying the terminal, and terminal related information previously set by default, in association with each other; a counterpart terminal manager (5003) that manages, for each one of the plurality of terminals (10), the terminal identification information for identifying the terminal, counterpart terminal identification information for identifying a candidate counterpart terminal that may be requested by the terminal to have communication with, and counterpart terminal related information individually set by a user who operates the terminal (10), in association with one another; a receiver (51) that receives, from a first terminal (10aa), a request to share a candidate counterpart terminal managed for the first terminal (10aa) with the second terminal (10ac), and information indicating whether to permit or reject sharing of the counterpart terminal related information individually set by the user of the first terminal (10aa) with the second terminal (10ac); and a transmitter (51) that transmits information regarding the candidate counterpart terminal managed for the first terminal (10aa) to the second terminal (10ac). In response to the information indicating to permit sharing of the counterpart terminal related information, the transmitter (51) transmits the counterpart terminal related information of the candidate counterpart terminal to be shared, which is managed by the counterpart terminal manager (5003) in association with the terminal identification information of the first terminal (10aa). in response to the information indicating to reject sharing of the counterpart terminal related information, the transmitter (51) transmits the terminal related information of the candidate counterpart terminal to be shared, which is managed by the terminal manager (5001) in association with the terminal identification information of the candidate counterpart terminal.
US09307199B2

Systems and methods for error resilient transmission, rate control, and random access in video communication systems that use sealable video coding are provided. Error resilience is obtained by using information from low resolution layers to conceal or compensate loss of high resolution layer information. The same mechanism is used for rate control by selectively eliminating high resolution layer information from transmitted signals, which elimination can be compensated at the receiver using information from low resolution layers. Further, random access or switching between low and high resolutions is also achieved by using information from low resolution layers to compensate for high resolution spatial layer packets that may have not been received prior to the switching time.
US09307196B2

A transmission management apparatus, method, and recording medium are provided, including a memory configured to store address information that associates, for each one of a plurality of request source terminals, request source terminal identification information and candidate counterpart terminal identification information; a receiver configured to receive connection request information from a transmission terminal as the request source terminal; and processing circuitry configured to: determine whether to provide status information of the transmission terminal of another transmission management apparatus, based on information of said another apparatus associated with the at least one candidate counterpart terminal, to generate a determination result when the receiver receives the connection request information, provide the status information of the transmission terminal of said another apparatus based on the determination result, and acquire status information of the at least one candidate counterpart terminal managed by said another apparatus included in the address information of the transmission terminal.
US09307191B2

Disclosed is a method of transmitting video via a network and a user device and computer program product configured to implement the method. The method comprises transmitting video of one or more users, received from an image capture device, to at least another user device via the network; receiving information about a communication channel between the user device and the other user device and/or about one or more resources of the user device and/or the other user device; selecting characteristics from a plurality of visual user characteristics based on the received information; and controlling the video based on detection of the selected characteristics to track the selected characteristics.
US09307189B2

A relay apparatus (10) is provided with: an image output unit (11); switches (SWa, SWb); a control unit (16) for controlling switches; and an obtaining unit (16) for obtaining a first CEC address associated with the relay apparatus if the relay apparatus is connected to an output apparatus (30). The control unit controls switches to select a signal channel connecting a first signal transmitting device (14) and a storage apparatus (20) if the first CEC address and a reproduction command are received. After connecting the relay apparatus and a unit (40), the control unit controls switches to select the signal channel connecting the first signal transmitting device and a second signal transmitting device (15) if the unit is in a video output state, and controls switches to select the signal channel connecting the first signal transmitting device and the image output unit if the unit is in a standby state.
US09307185B2

The present invention proposes a method to mark and exploit at least one sequence record of a video presentation played on a multimedia unit, said method comprising the steps of:—during the video presentation, receiving a command from a user to mark a currently displayed video sequence, said command initiating the step of:—creating a sequence record comprising a time index or frame index, allowing to locate the proper part of the video presentation, and a reference of the video presentation, At a later stage, requesting the edition of the sequence record by:—adding textual information which corresponds to the actual sequence,—storing the sequence record.
US09307184B2

Disclosed is an apparatus and method for allocating recordings to multiple users of a receiver. A graphical user interface may be displayed at a receiver and may show a listing of programs that have been recorded from a service provider broadcast or other transmission. An enhanced graphical user interface may include a listing of multiple users, each with separate listing of recordings. The recordings may be stored in a storage device associated with the receiver. A particular recoding may be deleted from the storage device when the recording has been deleted from each user's list of recordings.
US09307175B2

An image sensor system that compensates the amplifier in a column of a pixel array. This uses a sampling capacitor, that receives a signal from a pixel of the pixel array. A first plate of the sampling capacitor receives a value from the amplifier representing an offset level of the amplifier. While receiving the offset level from the amplifier on the first plate, the capacitor receives information from the pixel on a second plate of the same capacitor that is receiving the offset, thereby canceling the offset. The value from said sampling capacitor indicative of said information from said pixel with said offset cancelled being coupled to said amplifier to amplify said value as a first pixel value. The amplifier is also connected to other selecting switches from other pixels of said column of the pixel array.
US09307168B2

An image capture apparatus includes an image sensor in which a plurality of types of pixels including a specific pixel is arranged, and a detection unit configured to detect a defective pixel based on a pixel value of each pixel in the image sensor, wherein the detection unit is configured to exclude the specific pixel from a target of the defective pixel based on information indicating a position of the specific pixel in the image sensor.
US09307165B2

A camera that provides for a panorama mode of operation that stitches together two or more images to create a single image with a wide format. In panorama mode, a live view of a scene is transformed from rectangular coordinates to cylindrical coordinates and displayed by the camera. Also, an overlap portion between the previous image and the next image to be captured is characterized. In real time, after the previous image is captured, the overlap portion of the previous image is also transformed from rectangular coordinates into cylindrical coordinates. Next, the camera displays an overlay of at least a portion of the overlap portion onto the live view of the next image to be captured. And this overlay can assist the user in aligning the live view of the next image to be captured with the overlap portion of the previously captured image.
US09307159B2

A polarization image processing apparatus includes an illumination unit, a splitter, first and second polarization imaging devices, and a processing unit. The illumination unit illuminates a first surface of a transparent or translucent object with first illumination light polarized in a first direction and second illumination light polarized in a second direction, which crosses the first direction, alternately. Illumination axes of the first illumination light and second illumination light substantially coincide with an imaging axis of the polarization image processing apparatus. The splitter divides returning light into at least two light components. The first and second polarization imaging devices receive the light components. The processing unit detects a condition of a second surface of the object on the basis of first and second polarization images obtained by the first polarization imaging device and third and fourth polarization images obtained by the second polarization imaging device.
US09307155B2

The method is for determining an exposure control value for controlling exposure of a camera mounted on a vehicle to take images in the vicinity of the vehicle. The method includes a detection step of detecting a target from a taken image which the camera has taken in a state where the target is disposed within a image-taking area of the camera, a measurement step of measuring brightness of the target in the taken image, and a calculation step of calculating the exposure control value to such a value that the brightness of the target becomes equal to a target brightness appropriate for recognizing the target.
US09307153B2

A dual-shot image preview method and apparatus is disclosed. An electronic device with dual image sensors provides a preview screen combining in real-time a partial image captured from a first image sensor and a rear image captured from a second image sensor. The partial image is a portion of a front image that includes a desired portion of the user, such as the user's face based on algorithmic detection. The electronic device displays a dual-shot preview screen by overlaying the partial image on the rear image.
US09307152B2

A display control apparatus for controlling a display of a video image photographed by a camera discriminates a state and controls a display of a dialogue box in accordance with data which shows whether or not the dialogue box is displayed in accordance with a display mode for displaying the video image photographed by the camera and with the determined state.
US09307151B2

Provided are a method of controlling a camera of a device capable of minimizing a vision difference between a front camera and a user by displaying a reduced size preview image within a partial region of a display proximate to a lens of the front camera. When a photo is taken while the user views the reduced size preview image, a more natural image is captured.
US09307141B2

A focus detection device, a photoelectric conversion system, and a method of driving the focus detection device are provided in which a length of an electric charge accumulation period is determined based on a signal level based on an electric charge accumulated by a photoelectric converter in a sub-accumulation period.
US09307138B2

A method of determining a focal distance between a principal camera and a target object utilizes first and second video cameras mounted in spaced apart positions relative to a principal camera. A first video image from the first video camera is displayed on a video monitor and a second video image from the second video signal is superimposed onto the first image. First and second controllers are provided for positioning the first and second video images, respectively, on the video monitor. First and second position signals corresponding to positioning of the first and second video images, respectively, are acquired. When the images of a target object in the two video images are aligned, the position signals are used to compute the focal distance from the principal camera to the object.
US09307137B2

An imaging apparatus according to the present invention is an imaging apparatus performing live-view display when not performing the focus adjustment, and also when performing the focus adjustment, and includes: a focus adjustment brightness value calculation section comparing a first brightness value in the photometric area for the live-view display with a second brightness value in the photometric area for the focus adjustment, correcting the first brightness value according to a comparison result, and calculating a brightness value for obtaining the image data for the focus adjustment; an imaging section obtaining the image data by performing exposure using the brightness value calculated by the focus adjustment brightness value calculation section; a focus adjustment section performing the focus adjustment using the image data obtained by the imaging section, and a display section performing the live-view display using the image data obtained by the imaging section.
US09307136B2

An imaging apparatus includes an imaging element for outputting focus detecting signals. A DFE performs phase difference detection-type focus detecting calculation using an output signal of the imaging element. A CPU controls a focus drive circuit depending on the result of calculation and a focus lens is driven so as to perform a focus adjusting operation. The CPU controls the DFE to intermittently execute focus detecting calculation at a predetermined frequency set for a plurality of image frames. In the first mode, AF processing is executed at a rate of once in a few frames and the operation of a circuit unit for performing correlation calculation or the like is stopped in a frame period during which no focus detecting calculation is performed, whereas in the second mode, AF processing is executed for each frame so as to perform a focus adjusting operation following the movement of an object.
US09307127B2

An image capturing device and an image capturing system are provided. The image capturing device includes an optical system, a first filter provided near a diaphragm position of the optical system, a sensor, and a lens array. The first filter includes a plurality of filters respectively having different spectral characteristics. The sensor includes a plurality of filters respectively having different spectral characteristics. The lights from an object pass through the respective filters of the first sensor and the respective filters of the second sensor to simultaneously form a plurality of types of spectral image of the object on an image plane of the sensor.
US09307125B2

Provided is a position detection device including a detection unit configured to have a photo-reflector including a light emitter and a light receiver, the light receiver receiving light emitted from the light emitter and reflected by a reflective surface moved in a predetermined direction, the detection unit detecting a movement amount of the reflective surface based on a change in intensity of the received light, and a transparent member configured to be disposed between the reflective surface and the detection unit and to move together with the reflective surface, the transparent member being provided with a light blocking surface configured to block light and a light transmitting surface configured to transmit light, the light blocking surface and the light transmitting surface being arranged in a moving direction of the reflective surface.
US09307121B2

A conversion circuit includes: a conversion section configured to convert each of analog pixel signals into digital pixel data; a timing acquisition section configured to acquire specified timing, in which the specified timing defines a display period during which display of each of the analog pixel signals is performed in a cycle of a synchronization signal; a timing setting section configured to set timing that defines an extension period that is longer than the display period, in which the timing is other than the specified timing; an enable signal generation section configured to generate an enable signal, in which the enable signal indicates the extension period as a period during which the digital pixel data is valid; and an output section configured to output the digital pixel data that is valid, in accordance with the enable signal.
US09307114B2

An apparatus for backing up a digitally stored image includes a substrate on which the image and digital restoration data corresponding to the digitally stored image are printed on the substrate. The apparatus may be scanned to restore the image printed thereon to its original digital form.
US09307113B2

A display control apparatus includes a recording unit configured to record in a recording medium an image file with which position information and date and time information are associated, a reproducing unit configured to reproduce the image file recorded in the recording medium, an acquiring unit configured to acquire multiple pieces of tag information determined based on position information associated with the image file to be reproduced by the reproducing unit, a determining unit configured to determine tag information to be displayed on a playback screen of the image file based on date and time information in the acquired multiple pieces of tag information, and a display control unit configured to perform control to display the tag information determined by the determining unit on the playback screen of the image file.
US09307112B2

For cameras that capture several images in a burst mode, some embodiments of the invention provide a method that presents one or more of the captured images differently than the remaining captured images. The method identifies at least one captured image as dominant image and at least another captured image as a non-dominant image. The method then displays each dominant image different from each non-dominant image in a concurrent presentation of the images captured during the burst mode. The dominant images may appear larger than non-dominant images, and/or appear with a marking that indicates that the images are dominant.
US09307094B2

A system and method that includes receiving a communication request of an account, the communication request including communication properties; identifying at least two routing options of a route priority list, the routing options capable of completing the communication request and identified according to a priority heuristic; generating a communication cost from the communication properties; and upon receipt of the routing response and the communication cost response, executing a communication with a routing option of the routing priority list and committing a cost of the communication to the account.
US09307088B1

This document discusses, among other things, a networked contact center that includes multiple platforms to host multiple tenants. Example embodiments include receiving a message associated with one of the tenants and identifying one or more of the platforms associated with the message. For some example embodiments, the networked contact center may allow the platform to access a data location that is both associated with the tenant and shared by two or more of the multiple tenants.
US09307087B2

Systems and methods for permitting a contact center to provide enhanced services to its agents are described. An agent server is interconnected with the automatic call distributor (ACD) and agent telephones of the contact center. The server intercepts messages sent by the ACD, which contain caller-provided data obtained by an interactive voice response system. When it is determined that the particular agent has access to both a telephone and a personal computer, the agent server draws a distinction in the information content of the received message. In doing so, the agent server provides the call initialization information in the message to the agent's telephone, and appears as if the information were coming from the ACD; additionally, the agent server provides the caller-provided data to the agent's personal computer. The personal computer is then able to execute a predetermined application, such as a display-oriented presentation application, based on the caller-provided data.
US09307073B2

Visual assistance systems and related methods are disclosed. A visual assistance system includes a visual assistance service configured to receive and display images from a user device on an electronic display for a live assistant. The visual assistance service is also configured to transmit assistant audio from the live assistant conveying information derived by the live assistant's review of the images. A visual assistance system comprises a user device configured to capture and transmit the images to the visual assistance service. The user device is also configured to receive the assistant audio from the visual assistance service, and reproduce the assistant audio to a user of the user device. The user is registered with the visual assistance service as having at least a minimum level of visual disability. A method of operating the visual assistance system includes receiving the images from, and transmitting the assistant audio to the user device.
US09307071B2

A mobile wireless device conditionally disables device functionality when a driver is detected to be the user while in a moving vehicle. The device comprises sensors for sensing: motion, thermal images, and a vehicle cabin side. A processor is configured to perform a method including detecting whether the device is traveling within a moving vehicle; capture thermal image data points at multiple spatial locations; and render spatially binned thermal image data from the image data points. The processor is further configured to invoke a driver in possession mode of operation of the device in response to determining that: (1) the device performed the capturing while located in the front seat of the moving vehicle, by applying a front seat thermal image signature definition to the spatially binned thermal image data, and (2) the device is located on a driver side of the moving vehicle.
US09307065B2

A vehicle-mounted device includes: a phone book acquiring section for acquiring a phone book data of a portable device via a communication section; a manipulation section for rejecting an arrival of a call at a call section; a specification section for specifying a mail address of the opposite party from which the arrival of a call is rejected by the manipulation section with reference to the phone book data; and a call-rejected party mail-reception notification suppressing section for suppressing the notification of reception of an E-mail from the mail address specified by the specification section to the vehicle-mounted device.
US09307062B2

A protective case of a mobile includes: a main body having a size and shape adapted to receive a mobile terminal; a first connecting unit provided at a side of the main body; a cover connected to the main body by the first connecting unit and pivotable to a front side and a rear side of the main body about the first connecting unit; a second connecting unit provided at a side of the cover; and a support connected to the cover by the second connecting unit and pivotable to a front side and a rear side of the cover about the second connecting unit.
US09307060B2

Electronic devices such as smartphones (100) or tablet computers are provided with an illuminated integrated speaker port insert and button (110) which allows audio energy to pass out of the speaker port (108), serves as control button for a function such as volume control or power, and is provided with single or multi-color illumination (212) so as to serve as a visual information indicator. The button (110) can serve in place of side mounted button while not requiring additional allocation of area on the devices front surface beyond what would be allocated for a speaker port and therefore not reduce the area available for a display screen (203). The button may be more readily located by touch due to its location and by sight due to the provision of illumination and owing to its use as a speaker port insert the purpose of the button may be intuitively grasped and later recalled by the user.
US09307057B2

Methods and systems are provided for operating a SIMD packet parsing cluster, wherein the cluster includes a plurality of M packet parsing engines 1 to M, and the cluster further includes a shared memory and an instruction memory storing a plurality of instructions to be performed by each of the engines, and wherein the instructions include one or more memory accessing instructions that require accessing the shared memory. The method comprises transmitting the instructions to the engines for instructions to be executed by the engines; for each of the engines 2 to M, delaying execution of each of the memory accessing instructions by a delay time compared to a previous engine; and each one of the engines performing one of the memory accessing instructions at a time that the other engines are not performing one of the memory accessing instructions.
US09307053B2

An example method for direct data placement over User Datagram Protocol (UDP) in a network environment is provided and includes creating a queue pair (QP) for unreliable datagram transport in Infiniband according to an OpenFabrics Application Programming Interface (API) specification, mapping data generated by an application for transmission over the QP in a network environment to a UDP datagram, and passing the UDP datagram to a network interface for transmission.
US09307048B2

The described implementations relate to distributed computing. One implementation provides a system that can include an outlier detection component that is configured to identify an outlier task from a plurality of tasks based on runtimes of the plurality of tasks. The system can also include a cause evaluation component that is configured to evaluate a cause of the outlier task. For example, the cause of the outlier task can be an amount of data processed by the outlier task, contention for resources used to execute the outlier task, or a communication link with congested bandwidth that is used by the outlier task to input or output data. The system can also include one or more processing devices configured to execute one or more of the components.
US09307046B2

A transmission system determines whether property data of a transmission terminal matches property data of a counterpart terminal to generate similarity information indicating the degree of similarity between the property data of the transmission terminal and the property data of the counterpart terminal, and determines a destination to which the event data specifying an event created by the transmission terminal is to be transmitted based on the similarity information.
US09307041B2

A method for communicating in real-time to users of a provider of Internet access service, without requiring any installation or set-up by the user, that utilizes the unique identification information automatically provided by the user during communications for identifying the user to provide a fixed identifier which is then communicated to a redirecting device. Messages may then be selectively transmitted to the user. The system is normally transparent to the user, with no modification of its content along the path. Content then may be modified or replaced along the path to the user. For the purposes of establishing a reliable delivery of bulletin messages from providers to their users, the system forces the delivery of specially-composed World Wide Web browser pages to the user, although it is not limited to that type of data.
US09307033B1

A method of scheduling alerts based on location-based reminders and calendar events includes receiving, at one or more computing devices, a location-based reminder including a reminder location having a reminder proximity level. The method further includes receiving, at the one or more computing devices, a calendar event including a calendar event location and a calendar event duration. If the reminder location matches the calendar event location based on the reminder proximity level and the calendar event duration, the method further includes determining, using the one or more computing devices, a time to provide an alert.
US09307031B2

The present invention provides a system and method for real-time communication signaling between HTML5 endpoints and between HTML5 endpoints and the IMS Core of a telecommunication network. In an embodiment the system includes a WebRTC Session Controller (WSC) communicating over an Internet domain protocol with a client-side controller. The client-side controller provides an extensible JavaScript API. The extensible JavaScript API encapsulates the signaling aspect of a communication session of the HTML5 application, including gathering media description, establishing signaling channels, and exchanging media descriptions with the WSC, populating the relevant WebRTC objects, managing the call after it has been established. The extensible JavaScript API which provides for extending the JavaScript API to facilitate development of new types of HTML5 applications without changing the code of the existing JavaScript API.
US09307029B2

Methods, systems and computer program products to implement extensions of the Media Transport Protocol (MTP) are provided herein. The methods include opening a session between an initiator and a responder, exchanging one or more of device and system information and sending one of an operation or event based on control and status information. The operation includes one or more of a dataset, response code, operation parameter and response parameter. The methods also include sending or receiving one of an operation or event based on remote URL information. The operation includes one or more of a dataset, response code, operation parameter and response parameter. These extensions may be in the form of one or more of an operation, an event, a dataset or property code.
US09307023B2

A method is intended for controlling dissemination of content in a peer-to-peer mode between peers having wireless communication capacities. This method consists, each time a peer receives a content item it had requested and which is associated to a request counter, in creating at least one set of instructions intended for allowing replication of this content item by this peer, and in authorizing this peer to generate at most N replications of this content item for other peers it will meet and which does not possess it, where N is an integer value depending on the current value of this request counter and of an impatience reaction function which is representative of the mean time these peers are ready to wait for obtaining this content item.
US09307012B2

An application activation method includes interfacing a vehicle computing system with a remote device using an interface protocol. The method also includes sending a query from the vehicle computing system to the remote device to determine applications and/or services available on the remote device that are capable of interaction with the vehicle computing system. Once the applications have been determined, the method includes selecting, at the vehicle computing system, an application or service from the determined available applications and/or services for interaction. The method also includes sending an instruction from the vehicle computing system to an agent on the remote device, the instruction including an indication that the selected application or service is to be activated. Finally, the method includes receiving confirmation, at the vehicle computing system, that the application or service has been activated.
US09307011B2

Systems and methods herein are operable to simultaneously mirror data to a plurality of mirror partner nodes. In embodiments, a mirror client may be unaware of the number of mirror partner nodes and/or the location of the plurality of mirror partner nodes, and issue a single mirror command requesting initiation of a mirror operation. An interconnect layer may receive the single mirror command and split the mirror command into a plurality of mirror instances, one for each mirror node partner, wherein the mirror instances may be simultaneously launched. After the plurality of mirror operations has begun, the interconnect layer may manage completion reports indicating the completion status of respective mirror operations, and send a single return to the mirror client indicating whether the mirror command succeeded.
US09307010B2

Provided is a method of uploading data to a data server with minimum manipulations and downloading or retrieving the uploaded data by using a user's mobile terminal or a user-designated recipient's mobile terminal. A data upload method used by a computer system includes: monitoring whether a data upload shortcut command is input; selecting an object to be uploaded when an input of the data upload shortcut command is sensed; and transmitting an upload file, which consists of data of the selected object, to a data server.
US09307006B2

Methods and systems are provided for synchronizing and sharing data objects in a cloud based social networking environment of the type including a collaboration cloud. The method includes defining a sharing configuration within the collaboration cloud to include a second computing device; running a dedicated client synchronization application on a first computing device; creating a sync folder on the first computing device using the client synchronization application; updating a data object using the first computing device; adding the updated data object to the sync folder; automatically synchronizing the updated data object with the collaboration cloud; and propagating, using the collaboration cloud, the updated data object to the second computing device.
US09306997B2

A local proxy caches, in one or more transmitted data files (TDFs) in a deduplicated manner, chunks of one or more streams that have been transmitted to a remote proxy, each of the streams being identified by a stream identifier (ID). For each of the streams, the local proxy maintains a stream object having one or more TDF references, each TDF reference corresponding to at least a segment of the stream, wherein each TDF reference includes information identifying a file location within one of the TDFs at which the segment of the stream is located. The local proxy further maintains a chunk index having chunk index entries corresponding to deduplicated chunks of the streams, where each chunk index entry includes information identifying a stream location within one of the streams at which a corresponding chunk is located.
US09306991B2

An enhanced push to talk (PTT) method, a network, and a PTT server provide floor control and media traffic optimization for push to talk over cellular (PoC). Specifically, multiple Session Initiation Protocol (SIP) sessions are contemplated between controlling and participating servers while only requiring a single Real Time Protocol (RTP) session for media and a single Real Time Control Protocol (RTCP) session for floor control. In the single RTP and RTCP session, the synchronization source identifier (SSRC) can be used to differentiate between users equipment (UEs) at the controlling and participating servers.
US09306990B2

A system displays a map of a geographic area and an icon on a device associated with a first user. The icon represents a second user. The system further displays an indication on the device associated with the first user. The indication represents an area of the map displayed on a device associated with the second user. The system can further display a list of users on the device of the first user. The users on the list have devices associated with them and the devices associated with the users on the list display at least a portion of the map of the geographic area. The system receives input from the first user selecting a user from the list, and displays on the device associated with the first user the portion of the map of the geographic area that is displayed on the device associated with the user selected from the list.
US09306975B2

A device, method, computer program product, and network subsystem are described for signaling a first application relating with a first core and with a second core, and for aggregating information in response to data received after signaling the first application relating with the first core and with the second core, transmitting at least a portion of the information aggregated in response to the data received after signaling the first application relating with the first core and with the second core, or signaling via a third core a partial service configuration change at least in the first core in response to data received after signaling the first application relating with the first core and with the second core.
US09306968B2

Methods and systems for risk rating and pro-actively detecting malicious online ads are described. In one example embodiment, a system for risk rating and pro-actively detecting malicious online ads includes an extraction module, an analysis engine, and a filter module. The extraction module is configured to extract a SWF file from a web page downloaded by the system. The analysis engine is communicatively coupled to the extraction module. The analysis engine is configured to determine a risk rating for the SWF file and send the risk rating to a web application for display. In an example, determining the risk rating includes locating an embedded redirection URL and determining a risk rating for the embedded redirection URL. The filter module is configured to determine, based on the risk rating, whether to block the SWF file and send a warning to the web application for display.
US09306964B2

Actions of servers and other network devices within a network are monitored to detect whether the servers and network devices are performing tasks, using protocols, and communicating through ports that are consistent with legitimate (or “permissible”) purposes. That is, rather than attempting to belatedly identify malware signatures and screen all traffic into and out of a network for these signatures, embodiments of the present invention scrutinize devices (such as servers and other network infrastructure elements) for malware behavior that is inconsistent with an identified set of actions known to be consistent with legitimate tasks performed by the network device.
US09306959B2

A dual bypass module for managing an integrated secured network environment is provided. The module includes network ports that receive and transmit data traffic flowing through the network. The module also includes a set of monitoring ports that is configured for transmitting the data traffic between the dual bypass module and a set of monitoring systems. The module further includes a set of relays configured for controlling the flow of data through the dual bypass module. The module yet also includes a configurable integrated circuit. The configurable integrated circuit includes at least one of a first logic arrangement for determining conditions of the set of monitoring systems, a second logic arrangement for redirecting the data traffic through a secured alternate path when a monitoring system is unavailable, and a third logic arrangement for redirecting the data traffic through a secured alternate path when a communication path becomes unavailable.
US09306955B2

A policy is established comprising a condition having a multiphase attribute of a multiphase transaction. Phase specific policies are established for each phase in which the multiphase attribute may become known. The multiphase transaction is evaluated according to the phase specific policies at each phase of the multiphase transaction in which the multiphase attribute may become known until a policy decision of the policy is determined.
US09306938B2

Systems and methods are provided for authentication by combining a Reverse Turing Test (RTT) with password-based user authentication protocols to provide improved resistance to brute force attacks. In accordance with one embodiment of the invention, a method is provided for user authentication, the method including receiving a username/password pair associated with a user; requesting one or more responses to a first Reverse Turing Test (RTT); and granting access to the user if a valid response to the first RTT is received and the username/password pair is valid.
US09306936B2

Techniques are provided for obtaining first and second digital certificates from a certificate authority database for establishing a secure exchange between network devices. The first digital certificate contains identity information of a first network device, and the second digital certificate contains classification information of the first network device. In one embodiment, a secure key exchange is initiated with the second network device, and the first and second digital certificates are transmitted as a part of the secure key exchange to the second network device. In another embodiment, the first and second digital certificates are received by an intermediate network device. The first digital certificate is encrypted and is not evaluated by the intermediate network device. The second digital certificate is evaluated for classification information of the first network device. Source information associated with the first network device is stored, and encrypted traffic is processed between the network devices.
US09306935B2

A method for provisioning digital certificates in a compute service environment may include authorizing a customer entity for using and/or controlling a network resource in the compute service environment. Upon completing the authorization, a digital certificate may be issued to the customer entity. The digital certificate may be associated with the network resource and may be issued for a limited duration period. The use and/or control of the network resource by the customer entity may be monitored. Reissuance of the digital certificate may be conditioned on whether the customer entity is still using and/or controlling the network resource in the compute service environment. If the customer entity is still using and/or controlling the network resource in the multi-tenant environment, the digital certificate may be automatically reissued for another limited duration period. The automatically reissuing may take place without receiving a certificate reissue request from the customer entity.
US09306933B2

A network connection between an app on a mobile device and a remote server is either enabled or denied based on whether a security wrapped app can verify that the connection is with a known and trusted server. The wrapped app uses a socket interception layer injected into the app code along with a trust store, also part of the wrapped app to determine whether a network connection attempted by the app should be allowed. The layer buffers relevant function calls from the app by intercepting them before they reach the device operating system. If the layer determines that a network connection is attempted, then it snoops the negotiation phase data stream to discern when the server sends a certificate to the app. It obtains this certificate and compares it to data in the trust store and makes a determination of whether the server is known and trusted.
US09306929B2

A method is provided to manage access to a social network from a mobile device, which has a user ID. The method is executed by a server, which manages accesses for a plurality of social networks, each social network being associated with a location and a time window. The method includes: receiving a request from the mobile device to join a social network, the request comprising at least information on the location of the mobile device and the user ID; gathering a timestamp associated with the received request; retrieving at least one social network associated with the location of the mobile device and a time window comprising the time indicated by the timestamp and registering the user ID in association to the at least one social network.
US09306925B2

An image processing apparatus including: a first interface; a second interface configured to be connected with a server configured to perform user authentication; an image processing unit configured to execute a job including image processing; and a control device configured to: receive authentication information of a user via the first interface; transmit the received authentication information to the server via the second interface; execute a specific operation after receiving the authentication information, the specific operation being a part of the job; receive a result of the user authentication from the server after executing the specific operation; determine whether the user authentication by the server has been successful in accordance with the received result; and execute the rest of the job after completing the specific operation and determining that the user authentication has been successful.
US09306915B2

Embodiments of the disclosure can include systems and methods for secure file transfers. The onsite monitoring system secure file transfer solution can allow for transferring operational data by an onsite system behind a firewall to a central monitoring and diagnostic infrastructure by sending asynchronous, concurrent, parallel files over a port using a previously opened connection.
US09306910B2

Methods and systems for implementing private allocated networks in a virtual infrastructure are presented. One method operation creates virtual switches in one or more hosts in the virtual infrastructure. Each port in the virtual switches is associated with a private allocated network (PAN) from a group of possible PANs. In one embodiment, one or more PANs share the same physical media for data transmission. The intranet traffic within each PAN is not visible to nodes that are not connected to the each PAN. In another operation, the method defines addressing mode tables for the intranet traffic within each PAN. The entries in the addressing mode tables define addressing functions for routing the intranet traffic between the virtual switches, and different types of addressing functions are supported by the virtual switches.
US09306904B2

A transmission system and a transmission method for network address translation traversal are provided. The transmission system includes a private network device, a network address record device, a public network device and a network address translation server. The network address record device records an inner network address of the private network device and an outer network address corresponding to the inner network address. The public network device inquires the inner network address of the private network device and the outer network address corresponding to the inner network address from the network address record device, and generates a packet according to the inner network address and the outer network address corresponding to the inner network address. The network address translation server receives the packet from the public network device, and transmits the packet to the public network device.
US09306900B2

Provided is a communication device including: an address acquiring unit that acquires an IP address; a generating unit that generates, on the basis of the acquired IP address, a special reverse lookup domain name which is different from a standard reverse lookup domain name serving as a key for obtaining a domain name corresponding to the acquired IP address through a reverse DNS lookup; and a reverse-DNS-lookup processing unit that performs the reverse DNS lookup using the generated special reverse lookup domain name as a key, and acquires node descriptor data, which is different from the domain name and is associated with a communication device corresponding to the IP address acquired by the address acquiring unit.
US09306898B2

The present invention generally relates to systems and methods for sharing information related to a location also referred to herein as a “spot,” such as spot alerts and/or spot comments (e.g., shared information, advertisements, etc.) received, displayed, played, and/or actuated, for example, on recipient mobile electronic devices proximately located to such location (e.g., spot). Users of the system can create spot alerts in which designated recipients can receive messages, such as spot alerts and/or spot comments (e.g., shared information, advertisements, etc.) received, displayed, played, and/or actuated, for example, on respective recipient mobile electronic devices, when located within a proximity of a defined location (e.g., spot).
US09306890B2

A system for regulating e-mail comprises a database of information profiling legitimate e-mail usage. When an e-mail is received at the system, it is scrutinized relative to the information in the database. If the e-mail is found to be legitimate based upon this evaluation, it is delivered to the intended recipient. If, however, the e-mail appears on the basis of the evaluation to be the last in a series of illegitimate e-mails or otherwise has characteristics inconsistent with the profile of legitimate e-mail usage, the e-mail may not be delivered and the postmaster and administrator at the source of the e-mail is contacted.
US09306888B2

A method for filtering a notification being provided from an application to a user of a social networking system based on an action of the user is described. The method starts by receiving the notification from the application to the user. If the notification is a first notification sent from the application to the user, the notification is displayed to the user with (i) a prompting message that includes a selectable opt in image, and (ii) a selectable opt out image. The prompting message includes a request to opt in to receiving notifications from the application. If the notification is not the first notification sent from the application to the user, the method determines whether to display the notification to the user by determining whether the user previously opted in to notifications from the application and whether click-through rate (CTR) of notifications from the application is greater than CTR threshold.
US09306886B2

An electronic messaging system and method with reduced traceability. Separate displays are provided at a recipient user device for separately displaying via the user device header information of an electronic message and message content including a media component. The message content and the header information are correlated with a unique identifier. The header information is displayed in a message list via a first display. The message content including a media component is displayed via a second display. The display of the message content occurs via the second display without displaying the header information. Methods, systems, and computer readable media with separation of the display of media component and header information in various implementations may provide for reduced traceability of an electronic message.
US09306885B2

An electronic messaging system and method with reduced traceability. Message content and an identifier of a recipient are associated with an electronic message at a sending user device. The message content including a media component is associated via a first display and the identifier of a recipient is associated via a second display. The first and second displays are not displayed at the same time. The identifier of the recipient and the media component are not displayed at the same time via the second display. Transmission of recipient identifier and message content including a media component occurs separately from the sending user device. Methods, systems, and computer readable media with separation of the display of media component and recipient identifier in various implementations may provide for reduced traceability of an electronic message.
US09306884B2

The invention provides a computer-based method of transmitting a file, including receiving a message from a user mobile device at a service computer system, determining at the server computer system whether the message includes a search identifier, extracting at least one search result from a data store at the server computer system based on a search term in the message if the server computer system determined that the message included a search identifier, and transmitting a file corresponding to the search result from the server computer system to the user mobile device.
US09306882B2

An example method includes, responsive to receiving an indication of an incoming communication, identifying, by a computing device, first and second portions of an image that are associated with respective first and second portions of a face of a human user, wherein the human user has been determined to be an originator of the incoming communication. The example method further includes outputting, by the computing device and for display, the first and second portions of the image that are associated with the respective first and second portions of the face of the human user, and outputting, by the computing device and for display, message content associated with the incoming communication, such that the message content as displayed at least partially overlays the second portion of the image.
US09306879B2

A message-based identification process can facilitate reliable interoperation between accessories and host devices. During an identification process, the devices can negotiate an operating agreement that specifies particular communications (e.g., messages) that each device is permitted to send to or receive from the other, for example by having one device send a list of specific messages that it intends to send to and/or receive from the other. The other device can review the proposal and either accept or reject it. If a proposal is accepted, the devices can begin interoperating using messages that were included in the agreed-upon proposal while ignoring any received messages that were not included in the agreed-upon proposal.
US09306876B1

In a method of managing queues in an egress queuing system in a network device, a plurality of packets to be stored in a first egress queue are received. The first egress queue is distributed among a plurality of memory banks. The packets are distributed among the plurality of memory banks. Memory banks in which to store the packets are selected based on pseudorandom numbers generated for the packets. The pseudorandom numbers are generated using a first pseudorandom number generator initialized with a first seed. Subsequently, the packets are retrieved from the plurality of memory banks. Memory banks from which to retrieve the packets are selected based on pseudorandom numbers regenerated for the packets. The pseudorandom numbers are regenerated using a second pseudorandom number generator initialized with the first seed.
US09306873B2

A technique for allowing customers to control a video network. A network controller receives a request from an end user for a video connection between a first port and a second port. The request may specify at least a start time, an end time, the first port and the second port. A plurality of available routes between the first port and the second port may be analyzed to determine at least one selected route that will be used to connect the first port and the second port. A first command may be sent to automatically connect the first port and the second port via the at least one selected route at the start time. While in progress, the video connection may be modified according to system availability. Customers may have a view of all requests that have been made, completed or reserved for in the future.
US09306870B1

Methods and apparatus for emulating circuit switching in cloud networking environments are disclosed. A system includes a plurality of resources of a provider network and a resource manager. The resource manager receives a circuit switching emulation request specifying (a) a first resource group and a second resource group, and (b) a desired network traffic rate to be supported between the first and second resource groups. In response to a determination to accept the circuit switching emulation request, the resource manager initiates configuration operations associated with a network path between the first and second resource groups to allow network traffic between the first and second resource groups at a rate up to the desired network traffic rate.
US09306865B2

The disclosed embodiments provide a system that operates a switch fabric. During operation, the system creates a set of virtual links for a first set of physical ports in the switch fabric. Next, the system uses a set of virtual port numbers to create a set of mappings between the set of virtual links and a second set of physical ports in the switch fabric, wherein the second set of physical ports is connected to the first set of physical ports using a single physical link. The system then uses the mappings to provide non-blocking behavior in traffic from the first set of physical ports to the second set of physical ports.
US09306855B2

A method and apparatus for generating an IPv6 compliant label distribution protocol (LDP) control plane packet at a Label Switched Router (LSR).
US09306852B2

A method and apparatus are disclosed that seek to improve the quality of service that is experienced during the transmission of a stream of packets across one or more paths. In particular, a transmitting node encodes a source stream of data (e.g., audio, video, etc.) into one or more sub-streams, and distributes those sub-streams onto multiple network transmission paths. In accordance with the illustrative embodiment of the present invention, the transmitting node evaluates the quality of service of a first network path that fails to provide a quality-of-service guarantee. When the quality of service of the first network path becomes unsatisfactory, the coding of one or more sub-streams that are being transmitted on a second network path is adjusted. In other words, the coding on a second channel is adjusted in response to the changing conditions on a first channel.
US09306843B2

For a controller for managing a network comprising several managed forwarding elements that forward data in the network, a method for configuring a managed forwarding element is described. The method generates a first set of flow entries for defining forwarding behaviors of the managed forwarding element based on a current network policy for a logical network implemented in the several managed forwarding elements. The method sends the first set of flow entries to the managed forwarding element in order for the managed forwarding element to forward data that the managed forwarding element directly receives from an end machine based on the current network policy. The method generates a second set of flow entries for modifying forwarding behaviors of the managed forwarding element based on a new network policy for the logical network. The method sends the second set of flow entries to the managed forwarding element in order for the managed forwarding element to forward the data based on the new network policy.
US09306837B1

A method is provided in one example embodiment and includes determining a source of a packet received at a network element and characterizing a link on which the packet was received. The method further includes forwarding the packet to an overlay network and locally connected hosts other than a source of the packet if the source of the packet is a local host and the link is a local link; forwarding the packet to hosts that are not dually-connected to the network element if the source of the packet is the local host and the link is a core link; and forwarding the packet as indicated in a multicast tree if the source of the packet is a non-local host and the link is a core link.
US09306835B2

A node is configured to receive a packet from a host device, where the packet includes a source address associated with the host device; determine that the source address is not stored by the node; generate one or more logical distances, associated with one or more nodes, based on the source address and a respective address associated with each of the nodes; determine that another node is associated with a shortest logical distance, of the one or more logical distances; and transmit the source address to the other node based on the determination that the other node is associated with the shortest logical distance, where transmitting the source address allows the other node to store the source address or enables further nodes to obtain the source address from the other node.
US09306830B2

A method is disclosed for the collection of performance metrics by establishing service operations administration and maintenance (OAM) sessions between an actuator and a plurality of reflectors in a communication network. Test packets from an actuator simultaneously reach a plurality of reflectors along a test path. Each single test packet results into a plurality of test results, one per reflector, with quasi-synchronous performance metrics to sectionalize a network and more efficiently isolate fault or performance problems without the need for additional test packets to isolate the issue. Another method is disclosed wherein an actuator generates and transmits a plurality of simultaneous test packets, one per NID device, resulting into a plurality of test results, one per reflector, with quasi-synchronous performance metrics to sectionalize a network and more efficiently isolate fault or performance problems without the need for additional test packets to isolate the issue.
US09306829B1

A system and method for providing WiFi operators real-time end-user WiFi quality information is disclosed herein. An application server injects a scriptlet into a content transferred to a web browser of a mobile device during a browsing activity. The scriptlet is configured to run in the background of the browsing activity and configured to periodically test a latency of HTTP requests from the mobile device to the application server to determine a quality of the WIFI network.
US09306825B2

Described are embodiments directed at providing a witness service that sends notifications with a resource state to clients. Embodiments provide a protocol that includes various messages for registering and receiving notifications regarding the state of a resource. The protocol may include a message for requesting node information from a first node in a cluster. The node information identifies nodes in the cluster that provide a witness service, which monitors a resource. The protocol includes a message that is used to register with the witness service for notifications regarding a state, or state change, of a network or cluster resource. The protocol also includes messages for sending notifications with state information of the resource.
US09306824B2

A communication control apparatus that controls, in a second communication device, data communication from a first communication device to the second communication device, the second communication device transferring data received from the first communication device to a third communication device, the communication control apparatus including a first obtaining section that obtains a permitted reproduction period of the second communication device, this period being a period during which reproduction of data identical to lost data is permitted, a second obtaining section that obtains a first recovery period used for recovery of the lost data in the third communication device, and a control section that controls loss recovery processing in the second communication device, the lost data being recovered by the second communication device within a time difference that is a period obtained by subtracting the first recovery period from the permitted reproduction period.
US09306816B2

There is disclosed a system and method for replaying a network capture comprising loading a network capture file that displays at least one traffic flow comprising a sequence of packets, selecting at least one packet to display on a viewer and transmitting the network traffic to a device under test wherein the selected packet is displayed on the viewer when the packet is transmitted to the device under test.
US09306811B2

Systems, computer implemented methods, and computer readable medium having program products are provided to customize by a user weather-risk products and to provide a customized weather-risk product to be purchased by user. Embodiments of a system include a tract-user computer having a display to display graphical user interfaces to a user and an input to receive user selections, the tract-user computer being connected to a communications network to receive graphical user interfaces and transmit user selections to a weather-risk product issuer computer. Embodiments of a system can also include a database to associate user selections with actuarial data, location data, and basis weather data and a weather-risk product issuer computer to transmit graphical user interfaces to the tract-user computer, receive user selections, and process user selections to generate virtual weather data and to generate weather-risk products.
US09306799B2

An information processing apparatus is connectable to a plurality of devices of different types via a network. The information processing apparatus includes a receiving unit that receives, from the devices, management information of each of the devices in a data format corresponding to the respective devices; a first storage unit that stores therein a first conversion rule for converting the management information into manage information in a first common data format common to the devices; and a conversion unit that converts the management information thus received into management information in the first common data format based on the first conversion rule.
US09306778B2

It is presented a method, performed in a network node, for enabling selection of modulation mode for a user equipment, UE. The method comprises: determining whether to provide higher order modulation, HOM, mode support for the UE; when HOM mode support is to be provided, selecting at least one HOM table for the UE; and when HOM mode support is not to be provided, selecting at least one non-HOM table for the UE.
US09306773B2

A method of processing communication signals, is described. The method includes receiving a communication signal in a time domain, converting the communication signal to a frequency domain, providing resource blocks, the resource blocks including a first resource block and a second resource block, the first resource block having a first boundary and a second boundary, the first boundary being adjacent to the second resource block, the second boundary being non-adjacent to other resource blocks, the first resource block including pilot signals, generating a third resource block based on the one or more pilot signals, providing a first waveform based on the resource blocks and the third resource block, applying a smoothing filter against the first waveform to generate a second waveform, and converting the second waveform from the frequency domain to the time domain.
US09306771B1

A first throughput is determined of a first data flow at a gateway from a first access node and a second throughput is determined of second data flow at an inspection node from the gateway. A third throughput is determined comprising one or more third data flows from the gateway to a second access node based on a difference between the first throughput and the second throughput. At least one of the third data flows of the third throughput is identified, and when the third throughput meets a throughput threshold the identified third data flow is adjusted.
US09306767B2

The present invention connects a ring topology Ethernet network to other networks of various shapes. To that end, a first ring topology network configured in a ring shape has three or more expandable nodes (each have three or more Ethernet ports), and is connected to other networks through Ethernet ports that are not used for the formation of the first ring topology network among Ethernet ports of the expandable node. Thus, it is possible to add equipment without changing a ring topology network previously built and it is possible to integrate and manage networks of various shapes into a single network.
US09306761B2

A system and method implementing simultaneous video streaming to multiple end-user mobile user devices (MUD) is disclosed. The system/method utilizes an Ethernet/SATA bridge (ESB) to permit a host computer system (HCS) the ability to load video media content (VMC) on a local storage media (LSM) via a SATA multiplexer (MUX) using a hardware MAC-to-LBA transmission decoder (LTD). The HCS is configured to load a hardware service queue register (SQR) with end-user IP target address and VMC addressing information. A streaming FIFO controller (SFC) scans the SQR and retrieves data from the LSM via the SATA MUX and packetizes the IP target address and VMC data with an hardware Ethernet transport encoder (ETE) to transfer the VMC data stream directly from the LSM to the end-user MUD without HCS TCP/IP protocol intervention.
US09306760B2

A method of handling measurement capability for a mobile device capable of communicating with a network through a plurality of component carriers in a wireless communication system is disclosed. The method comprises sending a capability information message indicating a component carrier capability of the mobile device to the network, wherein the component carrier capability indicates the number of the plurality of component carriers, performing an inter-frequency measurement either on a first component carrier of the plurality of component carriers or on all of the plurality of component carriers, wherein the inter-frequency measurement is performed on the first component carrier when a measurement gap is configured to the first component carrier by the network and the inter-frequency measurement is performed on all of the plurality of component carriers when the measurement gap is configured to all of the plurality of component carriers by the network.
US09306756B2

Various exemplary embodiments relate to a method and related network node and machine-readable storage medium including a policy and charging rules node (PCRN) receiving a plurality of related service requests from different devices. The PCRN may proceed to generate a policy and charging control (PCC) rule based on at least one service request and other information stored in the PCRN if a mate service request does not arrive during the duration of a waiting timer. If the mate service request arrives subsequent to the expiry of the waiting timer, the PCRN may then generate a subsequent PCC rule to replace the previously generated rule, with the new PCC rule incorporating information from both of the mate service requests.
US09306755B2

The invention relates to a data transmission device for transmitting data between an Ethernet connection (3) suitable for energy transmission and a lighting mains current-free two-wire connection (4). According to the invention, a means for energy transmission is disposed between the Ethernet connection (3) and the lighting mains current-free two-wire connection (4).
US09306754B2

A system, apparatus, method, and machine readable medium are described for performing transaction signing within an authentication framework. For example, one embodiment of a method comprises: executing an online transaction between a first server and a client; providing transaction details of the online transaction to a second server; generating a signature over the transaction details using a key at the second server; transmitting an authentication request to the client with the signature and the transaction details; authenticating a user on the client to generate authentication data, the authentication data specifying whether the user was successfully authenticated on the client; and transmitting the authentication data, the transaction details, and the signature to the second server; using the transaction details and the key to validate the signature and using the authentication details to authenticate the client at the second server, wherein upon validating the signature and authenticating the client, the second server transmits a confirmation for the transaction to the first server.
US09306746B2

A circuit for obscuring gate switching noise includes a synchronous clock source; an asynchronous clock source; at least one current source; and a random number generating circuit for receiving clock inputs from the synchronous clock source and the asynchronous clock source, the random number generating circuit generating randomly changing asynchronous digital control signals for controlling the current source.
US09306743B2

Embodiments of the invention provide methods for key fob to control unit verification, retention, and revocation. After an initial pairing between a key fob and a control unit, the devices share a secret operation key (OpKey). For verification, the key fob sends the 8 lowest-order bits of a 128-bit counter and some bits of an AES-128, OpKey encrypted value of the counter to the control unit. For key revocation and retention, the control unit is prompted to enter an OpKey retention and revocation mode. Subsequently, each of the remaining or new key fobs is prompted by the user to send a verification message to the control unit. When the control unit is prompted to exit the OpKey retention and revocation mode, it retains the OpKeys of only the key fobs that sent a valid verification message immediately before entering and exiting the OpKey retention and revocation mode.
US09306733B2

A method of synchronizing a time division duplex (TDD) multi-line, multi-carrier data communication system is provided. Synchronization is established using unique pseudo-random bit sequences (PRBS) from a common generator polynomial having different seed values. Due to low correlation of PRBS generated with different seed values, a remote unit can only synchronize to its intended signal effectively mitigating far-end and near-end crosstalk impact of large bandwidth very high speed digital subscriber lines (VDSL).
US09306732B2

Embodiments include systems and methods for applying a controllable early/late offset to an at-rate clock data recovery (CDR) system. Some embodiments operate in context of a CDR circuit of a serializer/deserializer (SERDES). For example, slope asymmetry around the first precursor of the channel pulse response for the SERDES can tend to skew at-rate CDR determinations of whether to advance or retard clocking. Accordingly, embodiments use asymmetric voting thresholds for generating each of the advance and retard signals in an attempt to de-skew the voting results and effectively tune the CDR to a position either earlier or later than the first precursor zero crossing (i.e., h(−1)=0) position. This can improve link margin and data recovery, particularly for long data channels and/or at higher data rates.
US09306721B2

A first UE receives a first uplink-downlink configuration from a network entity via broadcast signalling. The first uplink configuration designates a first set of subframes of a series of subframes as uplink subframes. The first UE also receives a second uplink-downlink configuration via dedicated signaling. The second uplink-downlink configuration designates a second set of subframes of the series of subframes as uplink subframes. The first set of uplink subframes and the second set of uplink subframes differ from one another by at least one uplink subframe.
US09306719B2

Disclosed herein is HARQ management, scheduling, and measurements, among other things, for cooperative communication. For example, methods herein may be used in situations wherein relaying or helping mechanisms may comprise the use of a relay node which is part of a fixed infrastructure or a relay node which may be a mobile wireless transmit/receive unit (WTRU). In said situations, a first transmission with first data is established between an evolved NodeB (eNB) and a WTRU. A second transmission with second data is established between a relay node (RN) and the WTRU. Said first and second data are combined for decoding. A single HARQ feedback for said first and second transmissions is sent from the WTRU to the eNB.
US09306718B2

A method for mitigating helicopter rotor blockage of communications comprising fast fourier transforming (FFT) pilot symbols, implementing a time delay of one frame, applying a forgetting factor to an accumulated spectrum, and performing a leaky coherent integration, wherein the leaky coherent integration adds a result of the fast fourier transform of the one current frame of data to the accumulated spectrum. The method also comprises calculating a threshold, wherein the threshold is based on a mean energy of all FFT bins in the accumulated spectrum, masking the FFT bins, wherein masking comprises retaining only FFT bins that exceed the threshold and above a minimum expected rotor blocking frequency, inverse fast fourier transforming the accumulated spectrum, erasing the pilot symbols below the threshold and removing them from the signal, and erasing data symbols that lie in a blockage by setting associated bit-log likelihood ratios to zero.
US09306717B2

A method for a base station to transmit a channel-state-information reference signal for up to 8 antenna ports includes mapping, in accordance with a predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports onto a data region of a downlink subframe having an extended cyclic prefix (CP) structure, and transmitting the downlink subframe onto which the channel-state-information reference signal for up to 8 antenna ports has been mapped; and, in the predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports in mapped onto 2 OFDM symbols on the data region of the downlink subframe, with a definition for mapping onto at least one of 4 subcarrier wave positions in each of the 2 OFDM symbols, and the 4 subcarrier wave positions defined in the predetermined pattern can be disposed at 3 subcarrier wave intervals.
US09306716B2

A carrier tracking technique includes allocating a first number of bits per symbol to a carrier tracking subcarrier of a plurality of subcarriers of an orthogonal frequency division multiplexing (OFDM) signal based on a first target performance margin. The technique includes allocating numbers of bits per symbol to other subcarriers of the plurality of subcarriers based on a second target performance margin.
US09306713B2

Techniques for accessing a wireless communication system are described. A user equipment (UE) sends a random access preamble for system access. The random access preamble may include a random identifier (ID), a channel quality indicator (CQI), etc. The UE may randomly select the random ID or may be assigned this random ID. The UE receives a random access response from a base station. The random access response may include control channel resources (e.g., CQI and PC resources), uplink resources, and/or control information (e.g., timing advance and PC correction) for the UE. The random access response may be sent in two parts using two messages. A first message may be sent on a control channel and may include identification information and possibly other information. A second message may be sent on a shared data channel and may include remaining information for the random access response.
US09306711B2

A method of assembling a frame in an Orthogonal Frequency Division Multiple Access (OFDMA)-based communication system, wherein data packets to be transmitted from a broadcast station to a receiver are given a rectangular shape in terms of the two dimensions—time and frequency—of the OFDMA frame, and wherein the data packets are successively fitted into the OFDMA frame by way of a frame assembly scheduler, is characterized in that the filling process of the OFDMA frame is based on an ordered list of data structures that represent the current empty space within the OFDMA frame. Furthermore, a corresponding communication system is disclosed.
US09306706B2

A method for transmitting ACK/NACK (Acknowledge/Negative ACK) information for two or more carriers at a user equipment in a wireless communication system which supports carrier aggregation. The method according to one embodiment includes generating an ACK/NACK payload including two or more ACK/NACK sets, wherein each ACK/NACK set is associated with a corresponding carrier and have one or more ACK/NACK bits; and transmitting the ACK/NACK payload through a PUCCH (Physical Uplink Control Channel) or PUSCH (Physical Uplink Shared Channel). A size of the ACK/NACK payload is given based on carrier configuration, the carrier configuration including a number of configured carriers and transmission modes for the configured carriers. The two or more ACK/NACK sets are concatenated in an order of carrier index.
US09306696B2

A wireless network is provided that includes a base station and subscriber stations that communicate with the base station using radio frequency (RF) time division duplex (TDD) signaling. The base station may establish medium access control (MAC) connections with each station. The base station monitors communications with the stations and, in accordance, assigns stations or MAC connections to modulation groups. The base station transmits signals on MAC connections or to stations in a modulation group in adjacent TDD slots within a TDD frame. The base station may receive access requests from the stations, evaluate traffic requirements for the stations, and determine a longest downlink portion for the stations. The base station then allocates downlink and uplink portions of a TDD frame according to the length of the longest downlink portion.
US09306695B2

To enable more precise synchronization of distributed clocks, before a high-level frame is converted to a low-level frame for transmission over a communication network, if the high-level frame includes a certain type of message, it is flagged. The flag is detected during the conversion process, and the time of detection is stored as a transmission timestamp. When a low-level frame is received from the network, it is immediately timestamped with the time of reception. The timestamped frame is then converted to a high-level frame, and if the high-level frame includes the certain type of message, the timestamp is stored as a reception timestamp.
US09306692B2

A method for assessing the performance of packet synchronization services in a packet data transmission network. The method includes, at a packet data transmission network probing point, determining at least two synchronization quality describing or influencing parameters based on at least one of a digital timing signal (Sp) received, the recovered time information for at least one timing parameter transmitted into the packet data transmission network, and parameters having impact on the synchronization quality and describing or controlling properties of hardware components present at a receiving network node. The method also includes, at the packet data transmission network probing point, determining a value of at least one synchronization performance score based on the at least two synchronization quality describing or influencing parameters.
US09306690B2

The invention provides a transmitter comprising two (or more) phase locked loops controlling respective oscillators, and implementing different phase modulation. Multiple phases are derived from the respective oscillators, and an edge rotator forms an output signal from a combination of the phases. The oscillators can operate at different frequencies, neither of which is an integer multiple of the other, whereas the output signals of the multiplexers of the first and second phase locked loops are closer in frequency and can be the same. This reduces the problem of pulling, with a circuit that can be implemented with low power and area and with the versatility of being digitally intensive.
US09306685B2

An audio processing apparatus is configured to process audio signals from a plurality of sources. The audio processing apparatus may include a digital interface to receive status data indicating a status of at least one source, and an optical output device having a plurality of groups of graphics display areas which are respectively assigned to one of a plurality of audio channels of the audio processing apparatus. The audio processing apparatus may also include a control device configured to receive the status data, to determine at least one group of graphics display areas based on the received status data, and to control a graphics display area of the determined at least one group to display graphics generated based on the received status data.
US09306677B2

Problem to be SolvedTo provide an underwater communication system in which no holes need to be drilled in a shell body of a hermetically-sealed structure whose object is to operate underwater.SolutionThe underwater communication system includes: a hermetically-sealed structure 2 including a shell body 5 having a watertight structure and that is disposed underwater; a transmission unit 9 that is arranged in the hermetically-sealed structure 2 and that can perform wireless transmission; a non-conductive propagation medium 4 that includes one end portion being brought into contact with the outside of the shell body 5 having the watertight structure without making a hole therein; and a reception unit 10 that receives an electrical signal wirelessly transmitted from the transmission unit 9 from the other end portion of the propagation medium 4 that is located distally from the shell body 5.
US09306670B2

The present invention relates to an optical coupling/splitting device that realizes the splitting of a down-signal and the coupling of up-signals by the same optical device, and reduces coupling losses of the up-signal. An optical coupling/splitting device in the present invention comprises an optical coupling/splitting means for coupling a plurality of up-signals in a multi-mode for output and splitting a down-signal in a single mode for output, and a two-way optical propagation means for propagating the up-signal that is output from the optical coupling/splitting means in a multi-mode for output and propagate the down-signal in a single mode to be output to the optical coupling/splitting means.
US09306668B2

A balloon may include an optical-communication component, which may have a pointing axis. A pointing mechanism could be configured to adjust the pointing axis. The optical-communication component could be operable to communicate with a correspondent balloon via a free-space optical link. For example, the optical-communication component could include an optical receiver, transmitter, or transceiver. A controller could be configured to determine a predicted relative location of the correspondent balloon. The controller may control the pointing mechanism to adjust the pointing axis of the optical-communication component based on the predicted relative location so as to maintain the free-space optical link with the correspondent balloon.
US09306663B2

[Technical Problem]Placing optical performance monitors at all of nodes and links in a network results in a high monitoring capital expenditure (CAPEX).[Solution to Problem]A controller connected to a network and a plurality of nodes includes: a first degraded path detecting means for detecting a wavelength path as a first degraded path, whose quality is detected to be degraded, based on received parameter of wavelength paths in the network; a correlation path computation means for computing a correlation path which is correlated to the first degraded path; a second degraded path detecting means for detecting a second degraded path from the correlation path; and a failure localization means for localizing a node or a link connecting nodes as a failure node or a failure link, wherein the node or the link are traversed by both of the first degraded path and the second degraded path.
US09306650B2

The present invention is designed to prevent the decrease of throughput and also reduce the overhead of CSI feedback when CoMP transmission is applied. In a radio communication system including a plurality of radio base station apparatuses and a user terminal that is configured to be able to carry out coordinated multiple-point transmission/reception with the plurality of radio base station apparatuses, the radio base station apparatus designates a plurality of candidate values of predetermined inter-cell channel state information and reports them to the user terminal, and the user terminal measures inter-cell channel state information of each cell, and also selects a specific candidate value that is close to the measurement value of inter-cell channel state information from the plurality of candidate values that have been reported, and feeds back the specific candidate value to the radio base station apparatus.
US09306644B2

The disclosure relates to controlling uplink transmissions according to closed loop multi-antenna techniques such as closed loop uplink transmit diversity and uplink multiple-input multiple-output (MIMO). An exemplary method for use in a user equipment (81) configured for multi-antenna transmissions comprises a step of estimating (62) reception quality of a physical channel carrying pre-coding weight information to the user equipment (61). The method further comprises a step of determining (64) that the reception quality of the physical channel is inferior if the estimated reception quality is below a threshold and otherwise considering (65) the reception quality of the physical channel to be sufficient, in a further step the UE (61) applies (52) the pre-coding weight information received on the physical channel for uplink transmission only if the reception quality of the physical channel is considered to be sufficient.
US09306641B1

A multiple input multiple output wireless communication system and a channel decomposition method thereof are provided. The wireless communication system includes a precoding unit, a channel estimation unit, a channel decomposition unit and a quantization unit. The precoding unit receives a plurality of transmission data streams and a quantized wireless channel information to provide a plurality of transmission symbols to a wireless channel. The channel estimation unit estimates the wireless channel to provide a channel matrix. The channel decomposition unit makes a plurality of elements in a diagonal the same real numbered elements through matrix rations and matrix decompositions, and correspondingly rotates a first unit matrix and a second unit matrix to obtain a channel state information. The quantization unit provides the wireless channel information according to the channel state information.
US09306630B2

A near field communication (NFC) initiator communicates with a target device. The carrier is modulated to transmit a digital signal. During time slots allocated for target communication, the field is load modulated by the target. The target load modulator is driven by a digital modulator to vary voltage at antenna terminals so that peak amplitude of the carrier varies for specified periods between high and low values. To alleviate interference in the target device caused by the generation of aliases during transition, the load modulator sequentially applies a range of resistances to vary the amplitude (voltage) during transition according to a specific waveform determined by the infinite impulse response of a low pass filter tuned to the cut of frequency and sampling frequency determined according to the coexistence and cohabitation specifications of a chip in which the NFC functionality is embedded.
US09306616B2

An analog baseband filter apparatus for a multi-mode and multi-band wireless transceiver and a method for controlling the analog baseband filter apparatus are provided. The analog baseband filter apparatus includes a plurality of Radio Frequency (RF) units, each of the plurality of RF units being for receiving RF signals of one of a plurality of frequency bands and outputting baseband signals, a plurality of filter blocks for filtering and amplifying the baseband signals, and a switching unit for connecting at least two of the plurality of RF units to at least one of the plurality of filter blocks according to a selected communication mode, wherein the at least one of the plurality of filter blocks is configured to be connected to a capacitor region of an adjacent filter block from among the plurality of filter blocks.
US09306612B2

A mobile electronic device holder for retaining electronic devices of various sizes and configurations in a foldable case that removably secures to a variety of surfaces. The mobile electronic device holder includes a foldable base having a first, second, and third panel, wherein the first panel is removably secured to the second panel and the second panel is secured to the third panel. The first panel includes a pair of flexible and extendable arms that are used to hold an electronic device therein. A first and second retracting mechanism are attached to the second panel so as to removably connect the first panel thereto. The mobile electronic device holder further includes a variety of attachments and fasteners in order to allow the user to removably secure the foldable base to a variety of surfaces.
US09306611B2

Systems and methods of providing a mobile phone cover are described. In some embodiments, the mobile phone cover may include, for example, a processor and lighting devices. The lighting devices may be operatively coupled to the processor. The processor may be configured, for example, to receive first signals based on second signals in which the second signals are generated by the mobile phone. The second signals may be indicative of an incoming call, an incoming message, a pending message, and/or a calendar alert (e.g., an upcoming appointment), for example. The processor may be configured to cause lighting of one or more of the lighting devices based on the first signals.
US09306588B2

In accordance with embodiments of the present disclosure, a processing system may include a plurality of processing paths including a first processing path and a second processing path, a digital-to-analog stage output, and a controller. The first processing path may include a first digital-to-analog converter for converting the digital input signal into a first intermediate analog signal, the first digital-to-analog converter configured to operate in a high-power state and a low-power state. The second processing path may include a second digital-to-analog converter for converting a digital input signal into a second intermediate analog signal. The digital-to-analog stage output may be configured to generate an analog signal comprising a sum of the first intermediate analog signal and the second intermediate analog signal. The controller may be configured to operate the first digital-to-analog converter in the lower-power state when a magnitude of the digital input signal is below a threshold magnitude.
US09306587B2

The present disclosure provides an oscillator circuit. The oscillator circuit includes a signal selecting unit, a control voltage generating unit, a reference voltage generating unit, an output adjusting unit, and a frequency-dividing unit. The signal selecting unit is configured to select a reference signal or a frequency-divided signal as an input signal. The control voltage generating unit is configured to generate a control voltage based on the input signal. The reference voltage generating unit is configured to generate a reference voltage. The output adjusting unit is configured to generate an output signal based on the control voltage and the reference voltage. The frequency-dividing unit is configured to divide the frequency of the output signal and generate the frequency-divided signal.
US09306584B2

A delay circuit provides a quadrature-delayed strobe, a tightly controlled quadrature DLL and write/read leveling delay lines by using the same physical delay line pair. By multiplexing different usage models, the need for multiple delay lines is significantly reduced to only two delay lines per byte. As a result, the delay circuit provides substantial saving in terms of layout area and power.
US09306577B2

A digitally controlled oscillator includes a ring oscillator and a first supplementary circuit. The ring oscillator is coupled to a supply voltage and generates a signal oscillated at an oscillating frequency. The oscillating frequency is controlled by a digital code and further varies with a supply voltage drift in a first direction. The first supplementary circuit is coupled to the ring oscillator and facilitates the oscillating frequency to vary with the supply voltage drift in a second direction reverse to the first direction.
US09306575B2

One embodiment of the present invention provides a synthesizer. The synthesizer includes one or more tunable oscillators, a frequency-dividing circuit coupled to the tunable oscillators, and a multiplexer coupled to the frequency-dividing circuit. The frequency-dividing circuit includes a number of frequency dividers, and is configured to generate a number of frequency-dividing outputs. At least one frequency-dividing output has a different frequency division factor. The multiplexer is configured to select a frequency-dividing output.
US09306574B1

The clock divider circuit includes a dividing circuit, a selection circuit, and a synchronization circuit. The dividing circuit is configured to receive an input clock signal at a first frequency, and to produce a number of different periodic signals based thereon. The selection circuit is configured to receive various ones of the periodic signals. An output clock signal may be provided from the selection circuit based on a selection made therein. The input clock signal may have a frequency that is an integer multiple of the output clock frequency. The selection circuit is configured to provide the output clock signal at different, selectable frequencies. The synchronization circuit may control the timing of the switching of the output clock signal from one frequency to the next so that such switching may be performed without glitches.
US09306572B2

The present disclosure discloses an output buffer, a gate electrode driving circuit and a method for controlling the same. The output buffer includes a first transistor, a second transistor and an input signal control unit. The input signal control unit controls an input signal to obtain a pull-up signal and a pull-down signal, which are input to input terminals of the first transistor and the second transistor, respectively. The above output buffer uses the input signal control unit to divide one input signal into two signals, i.e., the pull-up signal and the pull-down signal.
US09306567B2

An identifier value stored within a programmable register of a memory device is compared with a selector address received, together with a memory access command, via a signaling interface having at least one I/O node coupled to a bidirectional signaling line. On-die termination circuitry is transitioned between first and second states or maintained in one or the other of the first and second states based, at least in part, on whether the selector address matches the identifier value, with transition to the first state including switchably coupling a first termination resistance between the I/O node and a supply voltage line.
US09306566B2

On-die termination circuitry within a non-volatile memory device applies a first termination resistance to an I/O node in response to a data storage command indicating that a data signal conveyed on a bidirectional signaling line is to be received within the non-volatile memory device via the I/O node, and applies a second termination resistance to the I/O node in response to information indicating that another memory device is to output a data signal onto the bidirectional signaling line.
US09306564B2

In a non-volatile memory device having an array of non-volatile storage elements, control information received via one or more control input nodes indicates, at different times, that (i) data signals representative of data to be stored within the array of non-volatile storage elements are to be received via a plurality of input/output (I/O) nodes of the non-volatile memory device, and (ii) data signals representative of data read from the array of non-volatile storage elements are to be output via the plurality of I/O nodes. First termination elements are switchably coupled to and decoupled from the I/O nodes based at least in part on the control information, and second termination elements are switchably coupled to and decoupled from the one or more control input nodes based at least in part on the control information.
US09306563B2

Embodiments of the invention are generally directed to a configurable single-ended driver. An embodiment of an apparatus includes an interface with a channel; and a single-ended driver to drive a signal on the channel, wherein the driver includes a mechanism to configure a termination resistance of the driver, configure a voltage swing of the driver, and configure a signal response of the driver.
US09306562B2

The present invention relates to a household appliance (1) comprising a panel (2) which is produced from at least partially electrically conductive material, a transparent non-conductive plate (3) which is placed onto the panel (2), more than one sensor (4) which is located on the non-conductive plate (3) and detects the touch of the user on the non-conductive plate (3), a circuit board (5) which evaluates the signals received from the sensor (4) and controls the operation of the household appliance (1) according to these signals, and at least one transmission element (6) which transmits the signals received from the sensor (4) to the circuit board (5).
US09306533B1

An RF impedance matching network includes a transformation circuit configured to provide a transformed impedance; a first shunt circuit in parallel to the RF input, the first shunt circuit including a first shunt variable capacitance component comprising (a) a plurality of first shunt capacitors coupled in parallel, and (b) a plurality of first shunt switches coupled to the plurality of first shunt capacitors and configured to connect and disconnect each of the plurality of first shunt capacitors to a first virtual ground; and a second shunt variable capacitance component including (a) a plurality of second shunt capacitors coupled in parallel, and (b) a plurality of second shunt switches coupled to the plurality of second shunt capacitors and configured to connect and disconnect each of the plurality of second shunt capacitors to a second virtual ground.
US09306532B2

A filter circuit includes: a filter element having a first terminal connected to an antenna, a second terminal connected to a receiving circuit, and a third terminal connected to a transmission circuit; a first inductor, a second inductor, and a third inductor connected in series between the first terminal and the third terminal of the filter element; a fourth inductor that has one end connected to a connecting node connecting the first inductor and the second inductor and that has the other end grounded; and a fifth inductor that has one end connected to a connecting node connecting the second inductor and the third inductor and that has the other end grounded.
US09306530B2

A filter circuit is provided having multipath interference mitigation. The filter includes a signal path extending from an input to an output. The signal path includes a conductive path and a ground. A pass band filter is disposed along the signal path between the input and the output. The pass band filter passes a first frequency spectrum in a provider bandwidth, and attenuates a second frequency spectrum in a home network bandwidth. The filter circuit further includes a multipath interference mitigation leg operatively branched from the signal path. The multipath interference mitigation leg increases a return loss of the home network bandwidth. A frequency response of the filter circuit is characterized by an insertion loss characteristic between the input and the output being less than 3 dB in the provider bandwidth, and more than 20 dB in the home network bandwidth.
US09306524B2

Methods of, apparatuses for, and non-transitory computer readable media having instructions thereon that when executed cause carrying out methods of determining and modifying the perceived loudness of a frequency domain audio signal where the frequency resolution, and corresponding temporal coverage of the frequency domain information is not constant. The frequency (and thus temporal) resolution of the perceived loudness processing is maintained constant at the longest block size. One method includes a block combiner and a loudness modification interpolator.
US09306519B1

Phantom-powered inline preamplifiers capable of variable impedance loading are disclosed with unique adjustable interfaces. By enabling a user to adjust impedance loading from an actively-powered audio preamplifier which takes a microphone electrical signal or another sound source signal as an input, this unique audio preamplifier design with various adjustable impedance loading interface configurations can change sound characteristics according to the user's preference in a recording, production, or live concert environment. In addition, a high pass filter incorporated in a preamplifier with the variable impedance loading feature allows the user to further customize sound characteristics in the recording environment. This novel inline preamplifier, which may be standalone or integrated into a microphone casing, is powered via a microphone cable from a component (e.g. another preamplifier) providing the phantom power. This inline preamplifier may be connected to a conventional microphone and receive phantom-power into the inline preamplifier from a conventional preamplifier.
US09306516B2

A switching amplifier realizes bidirectional energy flow and combines switching and power amplification into one single stage so as to increase system efficiency. The modulator circuit of the amplifier receives and modulates an input signal, and generates and outputs modulated driver signals, which are used by the power driver circuit to generate signals to drive switching transformers of an amplifier circuit of the amplifier, and control signals, which are used to control an output generator circuit so as to allow individual inductors across the load by enabling current flowing through the load to have a path to ground. The amplifier circuit comprises switching transformers as well as circuitries configured to capture energy returned from the load and enable the captured energy to flow back to a power supply circuit of the amplifier through an energy flow-back circuit of the amplifier.
US09306514B2

A heterojunction bipolar transistor (HBT) hybrid type RF (radio frequency) power amplifier includes a first device including an input terminal for receiving an RF signal, a pre-driver stage for amplifying the received RF signal, and an output terminal, the input terminal, the pre-driver stage and the output terminal being disposed in or over a first substrate; and a second device having a main stage having an HBT amplifier circuit disposed in or over a second substrate to further amplify the RF signal amplified by the pre-driver stage. The RF signal further amplified by the main stage is output through the output terminal of the first device.
US09306502B2

System providing switchable impedance transformer matching for power amplifiers. In an exemplary implementation, an amplifier providing switchable impedance matching includes an output inductor (L1) that is part of an output path of the amplifier and a first amplifier stage comprising a first inductor (L4) coupled to the output inductor, the first inductor configured to couple a signal amplified by the first amplifier stage at a first power level to the output inductor in response to a first enable signal. The amplifier also includes a second amplifier stage comprising a second inductor (L5) coupled to the output inductor, the second inductor configured to couple the signal amplified by the second amplifier stage at a second power level to the output inductor in response to a second enable signal.
US09306498B2

A circuit for generating a modulated signal is disclosed. The circuit includes a constant current source. The circuit further includes a first switch that is coupled to the constant current source. The circuit also includes a second switch that is coupled to the first switch and a ground. The first switch and the second switch are coupled to a third switch. The third switch is coupled to a first integrated circuit pad. The first integrated circuit pad is defined to be used for coupling the third switch to a resonance circuit.
US09306490B2

A photovoltaic module mounting assembly (200) uses a mounting device (74), mounting plate (110′), lower bracket (210), upper bracket (230), and stud (114). The mounting plate (110′) is positioned on the mounting device (74), and a leg (212) of the lower bracket (210) is positioned on the mounting plate (110′). An outside surface (222) of another leg (220) of the lower bracket (210) includes teeth (224) and engages an inside surface (238) of a leg (236) of the upper bracket (230), which also has teeth (240). The mounting plate (110′) engages a lower surface (63) of a photovoltaic module (58), an end of the leg (212) of the lower bracket (210) may engage a side surface (64) of the module (58), and a head (246) on an end of another leg (232) of the upper bracket (230) may engage an upper surface (65) of the module (58).
US09306483B2

A motor control device controls a speed of a motor. The motor control device includes: a target speed generating unit that generates a target speed; a speed detecting unit that detects a current speed of the motor; a speed comparing unit that compares the target speed with the current speed to calculate a speed error; an error amplifying unit that amplifies the speed error and outputs a control value; and a motor driving unit that drives the motor in accordance with the control value. The error amplifying unit has proportional integral characteristics by which the speed error is amplified with a proportional gain and integration is performed in a lower frequency range than an integral corner frequency, increases the proportional gain as the current speed is higher, and shifts the integral corner frequency to a lower frequency as the current speed is higher.
US09306478B2

The invention is directed to a method for braking an electric drive motor having a stator and a rotor. The stator has field coils which have electrical phase connections for three motor phases. To generate an electromagnetic rotating field driving the rotor, the phase connections are connected to a supply voltage via switches actuated by a control unit which closes the switches depending on the rotary position of the rotor. To brake a rotating rotor, a braking current is generated by short-circuiting the phase connections. A phase short circuit is switched in between each two phase connections of the field coils with a preset temporal sequence to brake the rotor. The phase connections short-circuited are each selected corresponding to the rotary position of the rotor so that that field coil is short circuited in which the voltage induced by the magnetic field of the rotating rotor passes through its maximum.
US09306455B2

A driver circuit for a switched-mode power converter is configured to perform hysteretic control of a switched-mode power converter. The switched-mode power converter comprises an inductor configured to store energy during a first state of the switch and to release energy towards a load of the switched-mode power converter during a second state of the switch. The driver circuit comprises a filter unit which is configured to determine a command signal based on a gate control signal applied to a gate of the switch. The command signal is indicative of a current through the inductor. The driver circuit comprises hysteretic control circuitry configured to generate the gate control signal based on the command signal; wherein the switch alternates between the first and second state when being subjected to the gate control signal.
US09306453B2

The power supply apparatus includes a switching element, a voltage output unit configured to generate a DC voltage by a switching operation of the switching element and output the generated DC voltage, a voltage correction unit configured to detect the output voltage and correct the detected voltage, a control unit configured to control operation of the switching element based on the corrected voltage and a threshold voltage, and a voltage increasing unit configured to increase a correction amount by the correction unit based on the operation of the switching element.
US09306451B2

A switch mode power supply having an output terminal configured to provide an output voltage which is regulated to an output target, the switch mode power supply has a first switch and a control circuit. When the output voltage increases to a first threshold voltage, the control circuit is configured to turn OFF the first switch until a time period expires.
US09306442B2

The present invention relates to a motor designed for being mounted on a circuit board, the circuit board having a pointer side and a rear side. The motor can be used for rotating an illuminated pointer. The motor comprises a light conveying pointer shaft for projecting through the circuit board from the rear side of the circuit board to the pointer side of the circuit board. The pointer shaft is arranged to convey light to the pointer. The motor further comprises a light guide for conveying light from a light source mounted on the circuit board to a rear end of the pointer shaft, the rear end of the pointer shaft being on the rear side of the circuit board. Thus, the motor can be advantageously mounted on the rear side of the circuit board.
US09306441B2

The invention relates to an electric machine (101) comprising a stator (103), a rotatably mounted rotor (105) having a magnetizable and coolable rotor section (107) made of a super-conducting material (417), a control unit (109) designed to control a stator flow for inducing a magnetic flow through the superconducting material (417). The invention also relates to a method for operating an electric machine (101).
US09306437B2

A method for producing a stator for an electrical machine as an internal rotor, in particular an electric motor. This method involves providing a multiplicity of separate pole teeth, which are wound. The ends of the winding wire of the pole teeth are connected to one another to create a flexible annular pole tooth assembly, and the flexible assembly is inserted into an injection mold and centered. The assembly located in the mold is encapsulated or sealed in a molding compound. In this way, a dimensionally stable stator with particularly good insulating properties can be produced.
US09306432B2

A motor is provided including a stator core having a plurality of stator fins projecting outwardly from the stator core. A plurality of stator cooling channels is defined between adjacent stator fins. A flow mixer ring is axially aligned with the stator core and separated therefrom by an axial gap. The flow mixer ring includes a plurality of ring fins projecting inwardly from an interior surface and a plurality of ring cooling channels defined between the plurality of ring fins. The plurality of ring fins extends from a first surface over at least a portion of an axial length of the flow mixer ring.
US09306425B2

A spring motor, comprising a housing, a stator core, a rotor core, a rotation shaft, a rotor coil, an insulated coil connection wire, a torsion spring, a connection shaft, a cylindrical spiral spring, a round funnel-shaped rubber sealing element, a battery and a spring fixing connection sleeve; the rotor coil of the motor is connected to the terminal of a motor end cover after the insulated coil connection wire winds around the periphery of the rotation shaft continuously several times; the connection shaft is fixed on the rotation shaft, and the cylindrical spiral spring is sleeved on the periphery of the opened end of the connection shaft; the round funnel-shaped waterproof rubber sealing element is sleeved on the rotation shaft; the battery is placed in a rectangular battery holder, three side frames of the battery holder are each a fixed structure, and one side frame of the battery holder is a moveable structure; the spring fixing connection sleeve is sleeved on the rotation shaft, the rear end of the torsion spring is placed on one side of the spring fixing connection sleeve, and the spring fixing connection jacket, the torsion spring and the rotation shaft are fixed and connected with screws.
US09306418B2

An uninterruptible power-supply apparatus has a storage battery including a first electrode and a second electrode, an output cable configured to output a discharge current of the storage battery to an external power line to be a backup target, and a first connection portion configured to externally take out a voltage of the first electrode.
US09306414B2

The invention is an electrical power system for powering quasi-remote loads wherein local electric utility power is stepped up in voltage and transmitted to a remote battery bank via a low cost, two-conductor, direct burial cable. The system is configured such that current in is this cable is relatively low and constant. The battery bank is used to buffer the low power feed from the electric utility source and the high power, high crest factor remote loads. An inverter, like the type used with off-grid solar power systems, converts the DC battery power to AC power to supply the remote loads.
US09306411B2

This communication apparatus makes it possible to have a non-contact charging module and a sheet antenna coexist, even in the case where there the non-contact charging module and the sheet antenna in the communication apparatus. The apparatus is provided with: a housing; a secondary-side non-contact charging module, which is housed in the housing, receives power by means of electromagnetic induction, and has a first coil having a conducting wire wound thereon, and a first magnetic sheet facing the first coil; and an NFC antenna, which is housed in the housing, and has a second coil having a conducting wire wound thereon, and a second magnetic sheet facing the second coil. The secondary-side non-contact charging module and the NFC antenna are not laminated to each other.
US09306407B2

A battery system comprising at least two battery modules, wherein each battery module consists of at least one battery and a controllable first switching apparatus, which is designed to connect the respective battery module into a current path of the battery system or to electrically bridge the respective battery module, comprising at least one controllable second switching apparatus, which is designed to electrically connect the at least two battery modules in parallel or in series and comprising a control device, which is designed to control the controllable first switching apparatuses and the controllable second switching apparatus as a function of the requested electrical power. In addition, the present invention discloses a method of operating a battery system.
US09306401B2

A wireless power transmitter for transmitting power in a wireless manner by forming a wireless power signal and a wireless power transfer method thereof are capable of optimizing transmission efficiency for a plurality of wireless power receivers, by deciding an optimal transmission parameter (especially, a frequency corresponding to the wireless power signal or a resonant frequency) for the plurality of wireless power receivers based on control errors received from the plurality of wireless power receivers, respectively, via respective time slots allocated to the plurality of wireless power receivers.
US09306389B2

An electrostatic discharge protection circuit is provided. First NMOS transistor is coupled to a power line. Second NMOS transistor is coupled between the first NMOS transistor and a ground. Detection unit provides a detection signal when an ESD event occurs at the power line. Trigger unit turns on the second NMOS transistor and the first NMOS transistor in sequence in response to the detection signal. Discharge path is formed from the power line to the ground via the first and second NMOS transistors. First PMOS transistor is coupled between the power line and a gate of the second NMOS transistor. Third NMOS transistor is coupled between the ground and the gate of the second NMOS transistor. Second PMOS transistor is coupled between the gates of the first and second NMOS transistors. Third PMOS transistor is coupled between the power line and the first PMOS transistor.
US09306380B2

A grommet adapted for insertion into a cable hanger includes a generally C-shaped main body formed of a polymeric material and having a longitudinal axis. Such a grommet can be securely held by a cable hanger.
US09306370B2

This invention provides a solution for operating a regenerative amplifier using a single electro-optical device, such as a Pockels cell. An efficient cavity geometry of a regenerative amplifier is provided for enabling pulse selection, coupling and releasing to an output by operating a single Pockels cell unit placed essentially in the middle of the optical cavity, between two polarizers, whereas a first polarizer is used for release of an amplified pulse and a second polarizer is used for injection of seed pulses and release of at least one of waste amplified pulses and seed pulses. One side of the cavity, with respect to the location of said Pockels cell, includes an empty space, whereas the other side is provided with a gain medium, which is pumped by a pump source. The regenerative amplifier of such optical design is both efficient and cost effective. The single electro-optical unit works both as the control unit for operating the regenerative amplifier and as an output pulse picker unit.
US09306363B1

In various embodiments, systems and methods can be structured to provide efficient active bidirectional mode-locked lasers, which can be used as intracavity phase interferometer (IPI) sensors. Stable bidirectional mode-locking can be achieved by a combination of a passive mechanism, a passively driven active mechanism, and a beat note detection system. Such systems can be used in guidance, navigation, and control systems, where attitude control of a vehicle relies on accurate measurements of its position and motion. In various embodiments, a detection system can be based on an all fiber intracavity phase interferometer (IPI) active laser capable of delivering accurate simultaneous measurements of all three degrees of rotation and position in a single, compact, cost effective unit. A variation of the same system can include a linear cavity laser for accurate measurements of acceleration without the use of any inertial masses. Additional apparatus, systems, and methods are disclosed.
US09306361B2

A gas laser includes a fan for producing a flow of a laser gas and a heat exchanger including multiple heat exchanger pipes. The heat exchanger further includes two end plates to which the multiple heat exchanger pipes are secured at the opposing ends thereof. The two end plates include openings for supplying a heat exchanger fluid to the multiple heat exchanger pipes. The multiple heat exchanger pipes extend substantially transversely relative to a flow direction of the flow of laser gas.
US09306359B2

A card edge connector includes a first insulating housing loaded with a plurality of first terminals, a second insulating housing loaded with a plurality of second terminals. A card receiving slot is defined between the first insulating housing and the second insulating housing with a key disposed in the card receiving slot. The first terminals and the second terminals are disposed at two opposite sides of the card receiving slot and comprising contacting portions extending in the card receiving slot. The first insulating housing defines a pair of locking arms at opposite ends thereof and extending towards the second insulating housing, the second insulating housing defines a pair of locking recesses, the locking arms are locking with the locking recesses thereby the first and second insulating housing are snugly attached together.
US09306358B2

A structure for wireless communication having a plurality of conductor layers, an insulator layer separating each of the conductor layers, and at least one connector connecting two of the conductor layers wherein an electrical resistance is reduced when an electrical signal is induced in the resonator at a predetermined frequency.
US09306354B2

The invention relates to a method for fabricating a plug (18) formed from a plug housing (19) and elongate contacts (3), the contacts (3) comprising a bent longitudinal axis (23) inside the finished plug (18), characterized by: introducing front portions (3a) of the contacts (3) into contact receptacles (17) of a plug housing part (7); holding the plug housing part (7) by means of a first holding arrangement (15) of a plug fabrication device (20); holding rear portions (3b) of the contacts (3) by means of a second holding arrangement (21) of the plug fabrication device (20); pivoting the first holding arrangement (15) with the plug housing part (7) held thereby relative to the second holding arrangement (21) with the contacts (3) held thereby, whereby the longitudinal axis (23) of the contacts (3) is bent in the region between their front portions (3a) and their rear portions (3b).
US09306352B1

The connector has a base with hooked side boards for joining a top cap. A partition board is placed between the side boards so as to form two slots for housing two metallic plates and two supporting pieces with slant top faces. The metallic plates have two upwardly extended conducting pins. Wires of exposed cores are placed on the supporting pieces. When the top cap is joined to the base, the wires are tightly locked by the top cap and the partition board while the conducting pins firmly contact with the cores. The connector can be quickly configured on a string of lamps and can be conveniently used to cascade multiple strings of lamps.
US09306345B2

A high-density cable end connector for transmitting high-frequency signals includes a first sub-assembly, a second sub-assembly, a printed circuit board, a shielding plate, and a shielding shell. The first sub-assembly includes first contacts, a first insulator, and a first cover body. The second sub-assembly includes second contacts, a second insulator, and a second cover body. The printed circuit board includes pins connected to the first contacts and the second contacts. The shielding shell at least partially surrounds peripheries of the first sub-assembly and the second sub-assembly. The shielding plate is disposed between the first contacts and the second contacts and fixed to the first insulator or the second insulator for insulating the first contacts from the second contacts. Therefore, the high-density cable end connector is prevented from having crosstalk resulted by high frequency signals between the first contacts and the second contacts.
US09306330B2

A lever-type connector has a lever (30) rotatably supported on support shafts (22) on outer side surfaces of side walls (21) of a wire cover (20). Guide ribs (14) are formed on outer surfaces of a first housing (10) and extend parallel to an assembling direction of the wire cover (20). Guide grooves (24) are formed in inner surfaces of the side walls (21) and are engageable with the guide ribs (14). Two housing-side lock projections (16) on the outer surface of the first housing (10) and two cover-side lock projections (27) on the inner surface of the side wall (21) are arranged to be located respectively at opposite sides of the guide rib (14) and at opposite sides of the guide groove (24) in a direction substantially parallel to the side wall (21) and intersecting the assembling direction of the side wall (21).
US09306318B2

One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element is set up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet.The electrical bushing includes an electrical filter structure. The at least one conducting element forms at least one electrically conducting surface of the filter structure.
US09306316B2

A ferrite core integrated waterproof connector includes wires (WH) each having a terminal fittings (20) mounted thereon and a housing (10) with terminal accommodating chambers (12A, 12B) for accommodating the terminal fittings (20). A plate-like rubber plug (30) covers a rear surface (10B) of the housing (10) and has wire insertion holes (31) arranged to correspond to the terminal accommodating chambers (12A, 12B). Lips (32) are formed on the inner peripheral surfaces of the wire insertion holes (31) for closely contacting the outer peripheral surfaces of coatings of the wires (WH). At least one ferrite core (50) is embedded in the one-piece rubber plug (30) and has at least one hollow portion 52 concentric with at least some of the wire insertion holes (31). The ferrite core (50) is radially outward of base parts of the lips (32) of the one-piece rubber plug (30).
US09306314B2

A cable connector assembly and method of assembling the same. The cable connector assembly includes a cable connector and a cable connected to the cable connector. The cable connector includes an insulative body, a plurality of terminals held in the insulative body, an internal member molded in the cable connector, and a plastic housing disposed outside of the internal member. The internal member includes a through hole penetrating obliquely the internal member. The through hole includes a first opening proximal to the cable and a second opening distal from the cable. Adhesive is filled the through hole from the first opening through the second opening to contact with an inner surface of the plastic housing.
US09306311B2

A connector includes a housing (10), terminal fittings (30) to be inserted into the housing (10), a retainer (20) configured to retain the terminal fittings (30) by being mounted into the housing (10) in a direction intersecting an inserting direction of the terminal fittings (30), resilient locks (25) formed on a base end of the retainer (20) in a mounting direction into the housing (10) and configured to hold the retainer (20) in a state mounted in the housing (10) by being locked to the housing (10). Slide-contact portions (28) formed on a tip side of the retainer (20) in the mounting direction into the housing (10) and extending parallel to the mounting direction of the retainer (20), and guides (16) formed in the housing, extending parallel to the mounting direction of the retainer (20) and to be brought into sliding contact with the slide-contact portions (28).
US09306303B2

An electrical connector for a circuit board includes an insulated housing, two narrow metal brackets, and a plurality of conductive contacts. The insulated housing has a connection plate, a raised portion, and two coupling portions at two opposite sides of the raised portion. The raised portion defines a plurality of contact grooves. Each coupling portion is formed in front of the raised portion. The two narrow metal brackets are provided for mounting with the coupling portions of the insulated housing. Each narrow metal bracket has a main plate, front and rear interference tabs for being interfered with one coupling portion of the insulated housing, and at least one positioning tab for being fixed onto the circuit board. The conductive contacts are fitted through the contact grooves of the raised portion.
US09306299B2

The present invention provides a connection terminal (1) which includes terminal members (2, 3) having cylindrical wire connecting parts (21, 31) to which conductors of electric wires are inserted and the conductors are electrically connected, and flat plate shaped attaching parts (22, 32) continuous to the wire connecting parts.
US09306290B1

The present invention relates to a controllable barrier layer against electromagnetic radiation, to be used, inter alia, as a radome for a radar antenna for instance. The barrier layer comprises a first frequency selective layer (4) of a given geometric shape, said frequency selective layer transmitting radiation of a certain polarization within a desired frequency band and reflecting radiation of a different polarization and radiation outside said band and at least a second identical frequency selective layer, which is placed close to or in connection with the first layer in the radiation direction. The layers are configured to be placed in a first position relative to each other so that they together obtain transmission properties similar to those of the first layer alone and in a second position relative to each other so that they together reflect radiation of said certain polarization within said desired frequency band.
US09306288B2

An antenna apparatus for a mobile terminal is provided. The antenna apparatus includes an antenna pattern, a first electric circuit and a second electric circuit respectively connected between both ends of the antenna pattern and a system ground, and a third electric circuit disposed between the antenna pattern and a feeding line, wherein the first electric circuit and the second electric circuit extend electrical wavelengths of the antenna pattern and the third electric circuit increases input impedance matching.
US09306283B2

A device includes a first loop antenna and a second loop antenna. The first loop antenna includes at least three sides, wherein at least two of the sides form an acute interior angle. The second loop antenna includes at least one side that runs in a substantially parallel direction to one of the at least three sides of the first loop antenna. The first loop antenna and the second loop antenna are arranged substantially on the same plane.
US09306282B2

An apparatus for antenna arrangement isolation is described. The apparatus includes a first antenna element (for example, a CMMB TV antenna) having a first radiator component and a second antenna element (for example, a cellular antenna) having a second radiator component. A first portion of the first radiator component is adjacent to a second portion of the second radiator component. The second radiator component is configured with at least one operational frequency range. The first portion of the first radiator corresponds to at least one minimum electric field region of at least one resonant frequency of the first radiator. The at least one resonant frequency of the first radiator overlaps with the at least one operational frequency range. Methods, Apparatus and Computer readable media for providing the antenna arrangement are also described.
US09306277B2

A multi-antenna device includes a grounding plate, a first antenna and a second antenna. The first antenna includes a first feed element that is grounded to the grounding plate via a first feed point. The second antenna includes a second feed element that is grounded to the grounding plate via a second feed point. The first feed point and the second feed point are disposed such that a straight line connecting the first feed point and a center of the grounding plate and a straight line connecting the second feed point and the center of the grounding plate are substantially perpendicular to each other in a plan view.
US09306274B2

An antenna device (10) includes: an antenna (100) including a radiating element (101) and an internal ground (103); a coaxial cable (200) whose internal conductor (204) is connected with the radiating element (101) and whose external conductor (203) is connected with the internal ground (103); and an external ground (500) connected with the external conductor (203) of the coaxial cable (200).
US09306271B1

Methods and apparatus are disclosed for receiving and transmitting signals at a balloon. Received signals can be received at the balloon, which can include a payload and an envelope. The envelope can include at least a first antenna section and a second antenna section. Both the first and second antenna sections are configured at least to receive the received signals and convey at least the received signals to the payload. The first antenna section can include a first metallization pattern to receive a first type of signal. The second antenna section can include a second metallization pattern to receive a second type of signal, with the first metallization pattern being different from the second metallization pattern.
US09306267B2

The metal housing of a miniaturized electronic device is shaped to function as a multiband antenna assembly. The antenna assembly includes a feeding terminal, a radiator connecting to the feeding terminal, and a metal element. The metal element is part of a housing of the electronic device. The metal element includes two antenna units, both of which are adjacent to and spaced from the radiator. An electronic device using the antenna assembly is also described.
US09306250B2

A protrusion 53 is shaped to protrude from a main body 51 toward a supporter non-contact part 23 so as to circumvent a supporter 30. The protrusion 53 includes a protrusion heat transfer surface 55 which is a surface on the battery heat transfer surface 20 side (i.e., an upper side Y2). A heat conduction member 40 contacts with the supporter non-contact part 23 and the protrusion heat transfer surface 55.
US09306244B2

A bidirectional interface circuit includes a first current mirror circuit that copies a first reference current to generate a first current sunk from a first output terminal, a second current mirror circuit that copies a second reference current to generate a second current sunk from a second output terminal, an interception switch that is connected between the first output terminal and the second output terminal, a first comparator that outputs an upper state signal based on a comparison result of a voltage of the first output terminal and a first threshold voltage, a third current mirror circuit that copies one of a third reference current and a fourth reference current to supply a third current flowing to a third output terminal, and a second comparator that outputs a lower state signal based on a comparison result of a voltage of the second output terminal and a second threshold voltage.
US09306231B2

A fuel cell electric generator designed for back-up in the absence of network electricity supply. The generator comprises a fuel cell stack, means for supplying the stack with a first and a second reagent flow comprising, in turn, pressure reducing means, and a manifold body to communicate with the stack said first and second reagent flows and at least a flow of coolant fluid via a respective coolant loop. The manifold body comprises inside chambers for the mixing of said reagent flows with corresponding re-circulated product flows and a coolant fluid expansion chamber within which said pressure reducing means of said first and second reagent flows are positioned at least partially drowned by said coolant. Method for the start-up and shutdown of the generator, and a method for detecting the flooding of a fuel cell and a method for detecting the presence of gas leakages in the generator are also disclosed.
US09306229B2

A fuel cell system includes a fuel cell, a fuel gas supply channel, a fuel off-gas discharge channel, an oxidant gas supply channel, an oxidant off-gas discharge channel, a first shut valve, a second shut valve, a shut valve controller, a temperature detector, a scavenging device, and an elapsed-time detector. The elapsed-time detector is configured to detect an elapsed time elapsed from a timing at which the fuel cell is shut down. The scavenging device scavenges the oxidant gas flow channel and the fuel gas flow channel in sequence if the elapsed time detected by the elapsed-time detector is within a first predetermined period of time. The scavenging device scavenges the fuel gas flow channel and the oxidant gas flow channel in sequence if the elapsed time detected by the elapsed-time detector is outside the first predetermined period of time.
US09306223B2

A eutectic formulation of KOH and NaOH is used as an electrolyte or an electrolyte-separator. An anode, and/or a cathode can contain the eutectic formulation of KOH and NaOH. A battery can contain an electrolyte-separator, an anode, and/or a cathode with the eutectic formulation of KOH and NaOH. The electrolyte in the electrolyte-separator can have a melting point from about 170° C. to about 300° C. making it suitable for use in a thermal battery that does not require a pyrotechnic device for certain high-temperature applications.
US09306222B2

A method of joining a substrate for a bipolar electrode of a bipolar battery to a frame for supporting the bipolar electrode for use in the bipolar battery includes the implanting of a thermoplastic material in the substrate. The substrate and the frame are then vibration welded together at a frequency in the range of 50 Hz to 1 kHz to melt the thermoplastic material. The melted thermoplastic material forms a continuous or substantially continuous loop around the substrate to join the substrate and the frame together. A bipolar battery comprising a substrate and a frame joined together by the method, and a substrate for a bipolar electrode for use in the method are also described.
US09306219B2

A binder composition of the present invention is for a non-aqueous secondary battery with excellent adhesion between an electrode active material and a current collector. A degree of electrode swelling with an electrolytic solution at a high temperature is small. This binder composition can be used in production of an electrode mixture for a non-aqueous secondary battery. The binder composition can comprise a binder made of a fluorinated copolymer having repeating units derived from tetrafluoroethylene and repeating units derived from propylene, and a solvent or dispersing medium, wherein the fluorinated copolymer has a weight average molecular weight of from 10,000 to 300,000.
US09306206B2

An alkaline cell comprising a housing having a bottom end and a top end, and an electrode assembly disposed within the housing. The electrode assembly comprises a single first electrode and a single second electrode, a separator therebetween, and an electrolyte. The first electrode comprises a hollow outer body and at least one inner body positioned inside the outer body, the outer body and the at least one inner body being joined together inside the housing to form a single substantially homogeneous structure having an essentially uniform electrode properties. The second electrode comprises an intermediate body at least partially disposed between the outer body and the at least one inner body and electrically isolated from the outer body and the at least one inner body.
US09306201B2

A power supply unit for an electric vehicle includes a tray and at least one battery module fixed on the tray via a strip. Each battery module includes a housing having a bottom plate mounted onto the tray, first to fourth side plates disposed on the bottom plate, a battery pack disposed in the housing and having a plurality of cells arranged along a thickness direction, and first flexible members disposed between the first side plate and the battery pack, and between the third side plate and battery pack respectively, for fastening the battery pack.
US09306200B2

A battery holding device is configured to hold a capacitor including at least one storage cell and includes a cell holder and a heater wire. The cell holder is provided at a side surface of at least one storage cell and has a concave-convex surface facing the at least one storage cell. The concave-convex surface has a protrusion contacting the at least one storage cell. At least a portion of the heater wire is embedded in the cell holder.
US09306191B2

An organic light-emitting display apparatus includes: a substrate; a plurality of thin film transistors on the substrate, each of the thin film transistors including an active layer, a gate electrode, and source and drain electrodes; first electrodes electrically connected to the plurality of thin film transistors, respectively, and being on respective pixels corresponding to the plurality of thin film transistors; organic layers on the first electrodes, respectively, and including light-emitting layers; auxiliary electrodes each of which is on at least a portion between adjacent organic layers of the organic layers; and a second electrode facing the first electrodes and covering the organic layers and the auxiliary electrodes.
US09306186B2

Provided is an organic electronic device exhibiting excellent conductivity and transparency of an electrode, and low driving voltage, together with en excellent storing property and excellent lifetime. Also disclosed is an organic electronic device possessing a transparent substrate and provided thereon, a first transparent electrode, a second electrode and an organic functional layer provided between the first transparent electrode and the second electrode, wherein the first transparent electrode and the second electrode are opposed to each other, and a transparent conductive layer containing a conductive polymer and an aqueous binder is provided between the first transparent electrode and the organic functional layer.
US09306185B2

There is provided a process for forming a contained second layer over a first layer, including the steps: forming the first layer having a first surface energy; treating the first layer with a priming layer; exposing the priming layer patternwise with radiation resulting in exposed areas and unexposed areas; developing the priming layer to effectively remove the priming layer from either the exposed areas or the unexposed areas resulting in a first layer having a pattern of priming layer, wherein the pattern of priming layer has a second surface energy that is higher than the first surface energy; and forming the second layer by liquid depositions on the pattern of priming layer on the first layer. There is also provided an organic electronic device made by the process.
US09306182B2

This disclosure relates to an organic zener diode having one electrode and one counter electrode, and an organic layer arrangement formed between the electrode and the counter electrode, wherein the organic layer arrangement includes the following organic layers: an electrically n-doped charge carrier injection layer on the electrode side, made from a mixture of an organic matrix material and an n-dopant, an electrically p-doped charge carrier injection layer on the counter electrode side, made from a mixture of another organic matrix material and a p-dopant, and an electrically undoped organic intermediate layer that is arranged between the electrically n-doped charge carrier injection layer on the electrode side and the electrically p-doped charge carrier injection layer on the counter electrode side. An electronic circuit arrangement with an organic zener diode and method for operating an organic zener diode are also provided.
US09306181B2

A carbon nanotube transistor and method of manufacturing a carbon nanotube transistor is disclosed. The carbon nanotube transistor includes a carbon nanotube on a substrate, a gate electrode deposited on the carbon nanotube, and at least one of a source electrode and a drain electrode deposited on the carbon nanotube and separated from the gate electrode by a space region. The carbon nanotube is doped at the gate electrode an in the space region to form a p-n junction.
US09306177B2

An organic light-emitting device includes an upper electrode, a lower electrode, and a light-emitting layer disposed between the upper and lower electrodes, wherein the light-emitting layer includes a host and a first dopant. The first dopant includes a pyridyltriazole derivative as an auxiliary ligand, the auxiliary ligand of the first dopant contains a functional group R1 or a functional group R2, and the first dopant is displaced toward a surface of the light emitting layer by the action of at least one of the functional groups R1 and R2, wherein the surface is on a side where the upper electrode is present, and also directed to a coating liquid for use in forming the light-emitting layer with an organic material. An organic light-emitting device is produced with the coating liquid, a light source apparatus includes the organic light-emitting device, and methods for manufacture thereof are disclosed.
US09306175B2

A high-efficiency, high-durability organic electroluminescent device, particularly a phosphorescent organic electroluminescent device is provided by using an organic compound of excellent characteristics that exhibits excellent hole-injecting/transporting performance and has high triplet exciton confining capability with an electron blocking ability, and that has high stability in the thin-film state and high luminous efficiency.The organic electroluminescent device includes a pair of electrodes, and a plurality of organic layers sandwiched between the pair of electrodes and including a phosphorescent light-emitting material-containing light emitting layer and a hole transport layer, wherein a compound of the following general formula (1) having a carbazole ring structure is used as a constituent material of the hole transport layer.
US09306164B1

Structures including alternating first U-shaped electrodes and second U-shaped electrodes and contact pads interconnecting the first and the second U-shaped electrodes are provided. Each of the first U-shaped electrodes includes substantially parallel straight portions connected by a bent portion located on one end of a substrate. Each of the second U-shaped electrodes includes substantially parallel straight portions connected by a bent portion located on an opposite end of the substrate. Every adjacent straight portions of neighboring first and second U-shaped electrodes constitute an electrode pair having a sub-lithographic pitch. Each of the contact pads overlaps and contacts the bent portion of one of the first and the U-shaped electrodes.
US09306161B1

A method of forming a conductive bridging memory cell can include forming an active electrode layer above a barrier layer formed on a lower conductive layer; forming at least one ion conductor layer over an active electrode layer; incorporating conductive ions into the ion conductor layer to create a switch memory layer that changes impedance in response to an electric field; and the active electrode layer is a source of conductive ions for the ion conductor, and the barrier layer substantially prevents a movement of conductive ions therethrough.
US09306158B2

A method of forming and a magnetoresistive random access memory (MRAM) device. In an embodiment, the MRAM device includes a magnetic tunnel junction (MTJ) disposed over a bottom electrode, the magnetic tunnel junction having a first sidewall, a top electrode disposed over the magnetic tunnel junction, and a dielectric spacer supported by the magnetic tunnel junction and extending along sidewalls of the top electrode, the dielectric spacer having a second sidewall substantially co-planar with the first sidewall of the magnetic tunnel junction.
US09306156B2

In a method of manufacturing an MRAM device, a first sacrificial layer, an etch stop layer, and a second sacrificial layer are sequentially formed on a substrate and then partially etched to form openings therethrough. Lower electrodes are formed to fill the openings. The first and second sacrificial layers and portions of the etch stop layer are removed to form etch stop layer patterns surrounding upper portions of sidewalls of the lower electrodes, respectively. An upper insulating layer pattern is formed between the etch stop layer patterns to partially define an air pad between the lower electrodes. A first magnetic layer, a tunnel barrier layer, a second magnetic layer, and an upper electrode layer are formed, and are etched to form a plurality of magnetic tunnel junction (MTJ) structures. Each MTJ structure includes a sequentially stacked first magnetic layer pattern, tunnel layer pattern, and second magnetic layer pattern, and each of the MTJ structures contacts a corresponding one of the lower electrodes.
US09306154B2

The present invention is directed to an MTJ memory element including a magnetic free layer structure which comprises one or more magnetic free layers that have a same variable magnetization direction substantially perpendicular to layer planes thereof; an insulating tunnel junction layer formed adjacent to the magnetic free layer structure; a magnetic reference layer structure comprising a first magnetic reference layer formed adjacent to the insulating tunnel junction layer and a second magnetic reference layer separated therefrom by a perpendicular enhancement layer with the first and second magnetic reference layers having a first fixed magnetization direction substantially perpendicular to layer planes thereof; an anti-ferromagnetic coupling layer formed adjacent to the second magnetic reference layer opposite the perpendicular enhancement layer; and a magnetic fixed layer comprising first and second magnetic fixed sublayers with the second magnetic fixed sublayer formed adjacent to the anti-ferromagnetic coupling layer opposite the second magnetic reference layer.
US09306148B2

In an electro-acoustic transducer 100 which is an oscillator device, center positions of principal surfaces of piezoelectric elements 130 that are positioned on both surfaces of an elastic member 120 are different from each other. As such, since the two piezoelectric elements 130 are disposed asymmetrically on the upper and lower sides in the electro-acoustic transducer 100, it is possible to prevent vibrations of reversed phases at the time of divided vibration in which the reversed phases overlap with each other. In other words, since it is possible to prevent the generation of sound waves due to the vibration of local reversed phases, the sound pressure level can be improved.
US09306138B2

A packaging structure of a vertical LED chip includes at least a support system, a glue cup that connects to periphery of the support system, a LED chip with light absorption substrate over the support system and packaging glue distributed in periphery of the LED chip, wherein the packaging structure also comprises a baffle that surrounds the outer side wall of the light absorption substrate. Adding of a baffle structure in the support system of the packaging structure can effectively prevent light from being absorbed by the light absorption substrate and reflect such light out of the packaging structure, thus increasing probability of light emitting and improving light intensity of the vertical LED chip.
US09306131B2

An optoelectronic semiconductor chip having a semiconductor layer sequence includes at least one active layer that generates primary radiation; a plurality of conversion layers that at least partially absorb the primary radiation and convert the primary radiation into secondary radiation of a longer wavelength than the primary radiation; and a roughened portion that extends at least into one of the conversion layers, wherein the roughened portion has a random structure, the semiconductor layer sequence is arranged on a carrier, a top side of the semiconductor layer sequence facing away from the carrier is formed by the roughened portion, the at least one active layer is located between the carrier and the conversion layers, and the roughened portion includes a plurality of recesses free of a semiconductor material.
US09306130B2

A method of manufacturing a light-emitting device includes forming a wave length conversion portion on a light-emitting element. The light emitting device includes a light-emitting element which emits light of a predetermined wavelength and a wavelength conversion portion which includes a fluorescent substance which is excited by the light emitted from the light-emitting element so as to emit fluorescence of a wavelength different from the predetermined wavelength, which wavelength conversion portion is formed by including the fluorescent substance, a layered silicate mineral, and an organometallic compound. The forming the wavelength conversion portion includes forming a fluorescent substance layer on the light-emitting element using a fluorescent substance dispersion liquid including a fluorescent substance and a layered silicate mineral, applying a precursor solution including an organometallic compound on the light-emitting element, and heating the precursor solution applied on the fluorescent substance layer.
US09306128B2

Provided are a light emitting apparatus and a surface light source apparatus having the same. The light emitting apparatus comprises a package body, a first color light emitting part in a first cavity of the package body, and a second color light emitting part in a second cavity of the package body. The package body comprises a plurality of cavities.
US09306126B2

Transparent conductive layers usable as ohmic contacts for III-V semiconductors with work functions between 4.1 and 4.7 eV are formed by annealing layers of transparent oxide with thin (0.1-5nm) layers of conductive metal. When the layers interdiffuse during the annealing, some of the conductive metal atoms remain free to reduce resistivity and others oxidize to reduce optical absorption. Examples of the transparent oxides include indium-tin oxide, zinc oxide, and aluminum zinc oxide with up to 5 wt % Al. Examples of the metals include aluminum and titanium. The work function of the transparent conductive layer can be tuned to match the contacted semiconductor by adjusting the ratio of metal to transparent oxide.
US09306122B2

An LED includes a first electrode, for connecting the LED to a negative electrode of a power supply and a substrate located on the first electrode in which a plurality of contact holes are formed extending through the substrate. The diameter of upper parts of the contact holes is less than the diameter of lower parts of the contact holes, and the contact holes are filled with electrode plugs connecting the first electrode to the LED die. The light emitting device includes the LED, and further includes a susceptor and an LED mounted on the susceptor. The manufacturing method includes forming successively an LED die and a second electrode on a substrate, patterning a back surface of the substrate to form inverted trapezoidal contact holes which expose the LED die, and filling the contact holes with conductive material until the back face of the substrate is covered by the conductive material.
US09306119B2

Provided is a semiconductor light-emitting element in which dopant interdiffusion is suppressed, the efficiency at which a carrier is infused into an active layer is improved, and there is less of a decrease in light-emitting intensity (droop) during high-current driving at a high light-emitting efficiency. The semiconductor light-emitting element composed of a GaN-based semiconductor includes an n-type semiconductor layer, an active layer formed on the n-type semiconductor layer, a first semiconductor layer formed on the active layer and having a concave/convex structure layer in the surface, and a second semiconductor structure layer doped with Mg and formed on the first semiconductor layer.
US09306105B2

Thin film photovoltaic devices that include a transparent substrate; a transparent conductive oxide layer on the transparent substrate; a n-type window layer on the transparent conductive oxide layer; a p-type absorber layer on the n-type window layer; and, a back contact on the p-type absorber layer are provided. The p-type absorber layer comprises cadmium telluride, and forms a photovoltaic junction with the n-type window layer. Generally, the p-type absorber layer defines a plurality of finger structures protruding from the p-type absorber layer into the back contact. The finger structures can have an aspect ratio of about 1 or greater and/or can have a height that is about 20% to about 200% of the thickness of the p-type absorber layer. Methods of forming such finger structures protruding from a back surface of the p-type absorber layer are also provided.
US09306098B2

A method of fabricating a photovoltaic device includes a step of forming an absorber layer above a substrate, and a step of forming a surface layer on the absorber layer. The absorber layer includes an I-III-VI2 compound, which contains a Group I element, a Group III element and a Group VI element. The surface layer includes an I-III-VI2 compound, which contains a Group I element, a Group III element and a Group VI element, and has an atomic ratio of the Group I element to the Group III element in the range of from 0.1 to 0.9.
US09306085B2

A solar cell includes negative metal contact fingers and positive metal contact fingers. The negative metal contact fingers are interdigitated with the positive metal contact fingers. The metal contact fingers, both positive and negative, have a radial design where they radially extend to surround at least 25% of a perimeter of a corresponding contact pad. The metal contact fingers have bend points, which collectively form a radial pattern with a center point within the contact pad. Exactly two metal contact pads merge into a single leading metal contact pad that is wider than either of the exactly two metal contact pads.
US09306082B2

The invention relates to a module for locally controlling a photovoltaic panel that includes: first and second terminals (B1, B2) for connecting in series by a single conductor (13) having homologous modules; a first terminal (A1) for connecting the photovoltaic panel, said first terminal being connected to the first terminal (B1) for connecting in series; a switcher (S) that is connected between the second terminal (B2) for connecting in series and a second terminal (A2) connecting the panel; a diode (D0) that is connected between the first and second terminals (B1, B2) for connecting in series; a converter (70) that is provided so as to supply power to the module on the basis of the voltage that is developed by the panel between the first and second terminals (A1, A2) connecting the panel; a sensor (R3) for measuring the current flowing within the single conductor (13); and a means (60, 62) for closing the switcher when the current flowing within the single conductor exceeds a threshold.
US09306081B2

Second wiring member includes a first wiring-member piece electrically connected to one of the solar cells of one of the adjacent solar cell strings, and a second wiring-member piece electrically connecting the first wiring-member piece to another one of the solar cell strings. First wiring-member piece includes wiring electrically connecting the solar cell and the second wiring-member piece to each other, a first insulating layer covering part of a surface of the wiring on a solar-cell side, and a second insulating layer covering part of a surface of the wiring on a side opposite from the solar cell. First portion of the wiring is exposed from the first insulating layer. Second portion of the wiring is exposed from the second insulating layer. First portion of the wiring is electrically connected to the solar cell, and the second portion of the wiring is electrically connected to the second wiring-member piece.
US09306079B2

A semiconductor device formed using an oxide semiconductor layer and having small electrical characteristic variation is provided. A highly reliable semiconductor device including an oxide semiconductor layer and exhibiting stable electric characteristics is provided. Further, a method for manufacturing the semiconductor device is provided. In the semiconductor device, an oxide semiconductor layer is used for a channel formation region, a multilayer film which includes an oxide layer in which the oxide semiconductor layer is wrapped is provided, and an edge of the multilayer film has a curvature in a cross section.
US09306078B2

A thin film semiconductor device has a semiconductor layer including a mixture of an amorphous semiconductor ionic metal oxide and an amorphous insulating covalent metal oxide. A pair of terminals is positioned in communication with the semiconductor layer and define a conductive channel, and a gate terminal is positioned in communication with the conductive channel and further positioned to control conduction of the channel. The invention further includes a method of depositing the mixture including using nitrogen during the deposition process to control the carrier concentration in the resulting semiconductor layer.
US09306076B2

A semiconductor device in which fluctuation in electric characteristics due to miniaturization is less likely to be caused is provided. The semiconductor device includes an oxide semiconductor film including a first region, a pair of second regions in contact with side surfaces of the first region, and a pair of third regions in contact with side surfaces of the pair of second regions; a gate insulating film provided over the oxide semiconductor film; and a first electrode that is over the gate insulating film and overlaps with the first region. The first region is a CAAC oxide semiconductor region. The pair of second regions and the pair of third regions are each an amorphous oxide semiconductor region containing a dopant. The dopant concentration of the pair of third regions is higher than the dopant concentration of the pair of second regions.
US09306069B2

The disclosure relates to a fin field effect transistor (FinFET). An exemplary FinFET comprises a substrate comprising a major surface; a fin structure protruding from the major surface comprising a lower portion comprising a first semiconductor material having a first lattice constant; an upper portion comprising the first semiconductor material, wherein a bottom portion of the upper portion comprises a dopant with a first peak concentration; a middle portion between the lower portion and upper portion, wherein the middle portion comprises a second semiconductor material having a second lattice constant different from the first lattice constant; and an isolation structure surrounding the fin structure, wherein a portion of the isolation structure adjacent to the bottom portion of the upper portion comprises the dopant with a second peak concentration equal to or greater than the first peak concentration.
US09306066B2

A semiconductor fin is on a substrate, and extends in a longitudinal direction parallel to the substrate. The fin projects, in a vertical direction, to a fin top at a fin height above the substrate. An embedded fin stressor element is embedded in the fin. The fin stressor element is configured to urge a vertical compression force within the fin, parallel to the vertical direction. Optionally, the semiconductor material includes silicon, and embedded fin stressor element includes silicon dioxide.
US09306064B2

The present disclosure provides a semiconductor device and an integrated apparatus having the same. The semiconductor device includes a substrate, a buffer layer on the substrate, a compensation area which includes a p-region and a n-region on the buffer layer, and a transistor cell on the compensation area. The transistor cell includes a source region, a body region, a gate electrode and a gate dielectric formed at least between the gate electrode and the body region. The gate dielectric has a thickness in a range of 12 nm to 50 nm.
US09306057B2

A semiconductor device includes a first well and a second well implanted in a semiconductor substrate. The semiconductor device further includes a raised drain structure above and in contact with the second well and separate from the gate structure. The raised drain structure includes a drain connection point above the surface of the second well.
US09306055B2

A method of forming an integrated DMOS transistor/EEPROM cell includes forming a first mask over a substrate, forming a drift implant in the substrate using the first mask to align the drift implant, simultaneously forming a first floating gate over the drift implant, and a second floating gate spaced apart from the drift implant, forming a second mask covering the second floating gate and covering a portion of the first floating gate, forming a base implant in the substrate using an edge of the first floating gate to self-align the base implant region, and simultaneously forming a first control gate over the first floating gate and a second control gate over the second floating gate. The first floating gate, first control gate, drift implant, and base implant form components of the DMOS transistor, and the second floating gate and second control gate form components of the EEPROM cell.
US09306052B2

A compound semiconductor device includes: an electron transit layer; an electron supply layer over the electron transit layer; a gate electrode, a source electrode and a drain electrode at a level above the electron supply layer; and a porous electrical insulating film that covers the gate electrode, the source electrode and the drain electrode, the porous electrical insulating film containing an organic constituent, and a cavity being formed around the gate electrode in the porous electrical insulating film. A cross-linking layer is on a surface of the porous electrical insulating film at the cavity side.
US09306050B2

A semiconductor structure includes a semiconductor layer that is passivated with an aluminum-silicon nitride layer. When the semiconductor layer in particular comprises a III-V semiconductor material such as a group III nitride semiconductor material or a gallium nitride semiconductor material, the aluminum-silicon nitride material provides a superior passivation in comparison with a silicon nitride material.
US09306032B2

A method for manufacturing a semiconductor device includes following steps. A substrate having at least a transistor embedded in an insulating material formed thereon is provided. The transistor includes a metal gate. Next, an etching process is performed to remove a portion of the metal gate to form a recess and to remove a portion of the insulating material to form a tapered part. After forming the recess and the tapered part of the insulating material, a hard mask layer is formed on the substrate to fill up the recess. Subsequently, the hard mask layer is planarized.
US09306019B2

Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a layered fin overlying a substrate, where the layered fin includes an SiGe layer and an Si layer. The SiGe layer and the Si layer alternate along a height of the layered fin. A dummy gate is formed overlying the substrate and the layered fin, and a source and a drain area formed in contact with the layered fin. The dummy gate is removed to expose the SiGe layer and the Si layer, and the Si layer is removed to produce an SiGe nanowire. A high K dielectric layer that encases the SiGe nanowire between the source and the drain is formed, and a replacement metal gate is formed so that the replacement metal gate encases the high K dielectric layer and the SiGe nanowire between the source and drain.
US09306018B2

A shielding structure for a semiconductor device includes a plurality of trenches. The trenches include passivation liners and shield electrodes, which are formed therein. In one embodiment, the shielding structure is placed beneath a control pad. In another embodiment, the shielding structure is placed beneath a control runner.
US09306016B2

The present invention provides a method for manufacturing a semiconductor device, which comprises: providing an SOI substrate, which comprises a base layer, an insulating layer located on the base layer and a active layer located on the insulating layer; forming a gate stack on the SOI substrate; etching the active layer, the insulating layer and a part of the base layer of the SOI substrate with the gate stack as a mask, so as to form trenches on both sides of the gate stack; forming a crystal dielectric layer within the trenches, wherein the upper surface of the crystal dielectric layer is lower than the upper surface of the insulating layer and not lower than the lower surface of the insulating layer; and forming source/drain regions on the crystal dielectric layer. The present invention further provides a semiconductor device. The present invention is capable of eliminating pathway for leakage current between source/drain regions and SOI substrate at the meantime of reducing contact resistance at source/drain regions.
US09306013B2

A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
US09306012B2

Among other things, one or more semiconductor devices and techniques for forming such semiconductor devices are provided. The semiconductor device comprises a strip-ground field plate. The strip-ground field plate is connected to a source region of the semiconductor device and/or a ground plane. The strip-ground field plate provides a release path for a gate edge electric field. The release path directs an electrical field away from a gate region of the semiconductor device. In this way, breakdown voltage and gate charge are improved.
US09306011B2

A semiconductor device includes a semiconductor substrate. The semiconductor substrate includes a plurality of first doping regions of a first doping structure arranged at a main surface of the semiconductor substrate and a plurality of second doping regions of the first doping structure arranged at the main surface of the semiconductor substrate. The first doping regions of the plurality of first doping regions of the first doping structure include dopants of a first conductivity type with different doping concentrations. Further, the second doping regions of the plurality of second doping regions of the first doping structure include dopants of a second conductivity type with different doping concentrations. At least one first doping region of the plurality of first doping regions of the first doping structure partly overlaps at least one second doping region of the plurality of second doping regions of the first doping structure causing an overlap region arranged at the main surface.
US09306004B2

A negative bevel edge termination for a Silicon Carbide (SiC) semiconductor device is disclosed. In one embodiment, the negative bevel edge termination includes multiple steps that approximate a smooth negative bevel edge termination at a desired slope. More specifically, in one embodiment, the negative bevel edge termination includes at least five steps, at least ten steps, or at least 15 steps. The desired slope is, in one embodiment, less than or equal to fifteen degrees. In one embodiment, the negative bevel edge termination results in a blocking voltage for the semiconductor device of at least 10 kilovolts (kV) or at least 12 kV. The semiconductor device is preferably, but not necessarily, a thyristor such as a power thyristor, a Bipolar Junction Transistor (BJT), an Insulated Gate Bipolar Transistor (IGBT), a U-channel Metal-Oxide-Semiconductor Field Effect Transistor (UMOSFET), or a PIN diode.
US09306003B2

A semiconductor device, including: a substrate having a first semiconductor material; a second semiconductor layer on the substrate; a third semiconductor layer on the second semiconductor layer and being a device formation region; an isolation structure on both sides of the third semiconductor layer and on the substrate; and an insulating layer below the source and drain regions of the third semiconductor layer and between the isolation structure and the ends of the second semiconductor layer.
US09305998B2

Deposition of lead-zirconium-titanate (PZT) ferroelectric material over iridium metal, in the formation of a ferroelectric capacitor in an integrated circuit. The capacitor is formed by the deposition of a lower conductive plate layer having iridium metal as a top layer. The surface of the iridium metal is thermally oxidized, prior to or during the deposition of the PZT material. The resulting iridium oxide at the surface of the iridium metal is very thin, on the order of a few nanometers, which allows the deposited PZT to nucleate according to the crystalline structure of the iridium metal rather than that of iridium oxide. The iridium oxide is also of intermediate stoichiometry (IrO2-x), and reacts with the PZT material being deposited.
US09305976B2

An electronic device includes a semiconductor memory. The semiconductor memory includes a stack structure including a first electrode, a second electrode, a third electrode, an insulating layer interposed between the first electrode and the second electrode, and a variable resistance layer interposed between the second electrode and the third electrode; and a selection element layer disposed over at least a part of a sidewall of the stack structure.
US09305975B2

A 3D semiconductor device and a method of manufacturing the same are provided. The method includes forming a first semiconductor layer including a common source node on a semiconductor substrate, forming a transistor region on the first semiconductor layer, wherein the transistor region includes a horizontal channel region substantially parallel to a surface of the semiconductor substrate, and source and drain regions branched from the horizontal channel region to a direction substantially perpendicular to the surface of the semiconductor substrate, processing the first semiconductor layer to locate the common source node corresponding to the source region, forming a gate in a space between the source region and the drain region, forming heating electrodes on the source region and the drain region, and forming resistance variable material layers on the exposed heating electrodes.
US09305960B2

A method of manufacturing a semiconductor device is provided. The method comprises a first step of forming a first hole opened to a side of a first surface of a semiconductor substrate, the semiconductor substrate including the first surface and a second surface opposite to the first surface, a step of filling the first hole with an insulating member, a step of forming, on the first surface, an insulating film that covers the insulating member, a step of forming a second hole in the insulating film and the insulating member, a step of filing the second hole with a conductive member, a step of thinning the semiconductor substrate from the side of the second surface of the semiconductor substrate so as to expose the insulating member.
US09305954B2

A sensor has first pixels each including one of red, green and blue color filters, and second pixels each including one of red, green and blue color filters. In the first and second pixels including color filters of the same color, light transmittances of the light transmissive portions are different. A light transmittance of the light transmissive portion of the first pixel including the red color filter is lower than that of the light transmissive portion of the first pixel including the green color filter, and a light transmittance of the transmissive portion of the first pixel including the green color filter is lower than that of the light transmissive portion of the first pixel including the blue color filter.
US09305953B2

An imaging device includes a light-sensing pixel region; a first pixel region; a second pixel region; a first wiring layer disposed above the light-sensing pixel region; and a second wiring layer disposed above the topmost wiring layer of the wiring layer disposed above the light-sensing pixel region, above the second pixel region. The first pixel region is disposed between the light-sensing pixel region and the second pixel region, adjacent to the light-sensing pixel region and the second pixel region, wherein the first pixel region overlaps, in plan view, a first shielding portion included in the first wiring layer. The second pixel region overlaps, in plan view, a second shielding portion included in the second wiring layer. An electroconductive pattern is formed at the first wiring layer at a position overlapping the second pixel region in plan view.
US09305951B2

A pixel structure of a CMOS image sensor pixel structure and a manufacturing method thereof. The structure comprises a photosensitive element (37) and a multi-layer structure of a standard CMOS device arranged on the silicon substrate (31). A deep groove (38) having a light-transmitting space therein is formed above the photosensitive element, a side wall of the deep groove is surrounded by a light reflection shielding layer (39) continuously arranged in a longitudinal direction to reflect the light incident on the light reflection shielding layer. The side wall of the deep groove is surrounded by metal interconnects, vias, contact holes and polysilicon in annular configurations, thus the incident light on the deep grove is substantially completely reflected, which avoids the optical crosstalk and effectively improves the optical resolution and sensitivity of the pixel and the performance and reliability of the chip.
US09305935B2

A method of making multi-level contacts. The method includes providing an in-process multilevel device including at least one device region and at least one contact region. The contact region includes a plurality of electrically conductive layers configured in a step pattern. The method also includes forming a conformal etch stop layer over the plurality of electrically conductive layers, forming a first electrically insulating layer over the etch stop layer, forming a conformal sacrificial layer over the first electrically insulating layer and forming a second electrically insulating layer over the sacrificial layer. The method also includes etching a plurality of contact openings through the etch stop layer, the first electrically insulating layer, the sacrificial layer and the second electrically insulating layer in the contact region to the plurality of electrically conductive layers.
US09305931B2

A non-volatile memory cell and array structure is disclosed situated within a high voltage region of an integrated circuit. The cell utilizes capacitive coupling based on an overlap between a gate and a drift region to impart a programming voltage. Programming is effectuated using a drain extension which can act to inject hot electrons. The cell can be operated as a one-time programmable (OTP) or multiple-time programmable (MTP) device. The fabrication of the cell relies on processing steps associated with high voltage devices, thus avoiding the need for additional masks, manufacturing steps, etc.
US09305930B2

A flash memory device in a dual fin single floating gate configuration is provided. Semiconductor fins are formed on a stack of a back gate conductor layer and a back gate dielectric layer. Pairs of semiconductor fins are formed in an array environment such that shallow trench isolation structures can be formed along the lengthwise direction of the semiconductor fins within the array. After formation of tunneling dielectrics on the sidewalls of the semiconductor fins, a floating gate electrode is formed between each pair of proximally located semiconductor fins by deposition of a conformal conductive material layer and an isotropic etch. A control gate dielectric and a control gate electrode are formed by deposition and patterning of a dielectric layer and a conductive material layer.
US09305928B2

Semiconductor devices having a silicon-germanium channel layer and methods of forming the semiconductor devices are provided. The methods may include forming a silicon-germanium channel layer on a substrate in a peripheral circuit region and sequentially forming a first insulating layer and a second insulating layer on the silicon-germanium channel layer. The methods may also include forming a conductive layer on the substrate, which includes a cell array region and the peripheral circuit region, and patterning the conductive layer to form a conductive line in the cell array region and a gate electrode in the peripheral circuit region. The first insulating layer may be formed at a first temperature and the second insulating layer may be formed at a second temperature higher than the first temperature.
US09305924B2

Disclosed herein is a device that includes: a substrate having a gate trench; a gate electrode embedded in the gate trench with an intervention of a gate insulation film; and an embedded insulation film embedded in the gate trench. The substrate includes a first impurity diffusion region in contact with the embedded insulation film and a second impurity diffusion region in contact with the gate insulation film. The gate trench including a first trench portion extending in a first direction and second and third trench portions branching from the first trench portion and extending in a second direction that crosses the first direction. The gate electrode including first, second and third electrode portions embedded in the first, second and third trench portions of the gate trench, respectively. The first impurity diffusion region being sandwiched between the second and third electrode portions.
US09305920B2

A high voltage metal-oxide-metal (HV-MOM) device includes a substrate, a deep well in the substrate and at least one high voltage well in the substrate over the deep well. The HV-MOM device further includes a dielectric layer over each high voltage well of the at least one high voltage well and a gate structure over the dielectric layer. The HV-MOM device further includes an inter-layer dielectric (ILD) layer over the substrate, the ILD layer surrounding the gate structure. The HV-MOM device further includes a first inter-metal dielectric (IMD) layer over the ILD layer and a first metal feature in the first IMD layer, wherein the first metal feature is part of a MOM capacitor.
US09305919B2

A semiconductor device includes an internal circuit and a cell-type power decoupling capacitor. The cell-type power decoupling capacitor is formed on a semiconductor substrate using a stack cell capacitor process. The cell-type power decoupling capacitor stabilizes a supply voltage to provide the stabilized supply voltage to the internal circuit. Accordingly, the semiconductor device including the cell-type power decoupling capacitor may be insensitive to power noise and may occupy a small area on a chip.
US09305906B2

In a semiconductor light emitting device, a light emitting structure includes a first-conductivity type semiconductor layer, an active layer, and a second-conductivity type semiconductor layer, which are sequentially formed on a conductive substrate. A second-conductivity type electrode includes a conductive via and an electrical connection part. The conductive via passes through the first-conductivity type semiconductor layer and the active layer, and is connected to the inside of the second-conductivity type semiconductor layer. The electrical connection part extends from the conductive via and is exposed to the outside of the light emitting structure. An insulator electrically separates the second-conductivity type electrode from the conductive substrate, the first-conductivity type semiconductor layer, and the active layer. A passivation layer is formed to cover at least a side surface of the active layer in the light emitting structure. An uneven structure is formed on a path of light emitted from the active layer.
US09305905B2

An apparatus including semiconductor dies in a stack. The semiconductor dies are configured to power-up in a staggered manner. Methods for powering up an electronic device include detecting a power-up event with the semiconductor dies in the stack, and responsive to the power-up event, powering up a first semiconductor die in the stack at a first time, and powering up a second semiconductor die in the stack at a second time that is different from the first time.
US09305902B1

A semiconductor device includes a plurality of conductors for connecting another semiconductor device. Each conductor connects to a chip select pad within the semiconductor device through an upper vertical connection formed through an insulation layer formed on a substrate or connected to a straight vertical connection formed through the substrate and the insulation layer. The semiconductor device further includes a plurality of lower vertical connections formed through the substrate and correspondingly connecting to the chip select pads and a chip select terminal. The chip select terminal electrically connects to the die circuit of the semiconductor device while the chip select pads are electrically isolated from the die circuit. The lower vertical connections and the straight vertical connection can be arranged in two dimensions.
US09305900B2

A semiconductor device includes a substrate, a controller chip, and memory chips. Wiring is formed on the substrate. The controller chip has a rectangular surface area, and is mounted on the substrate. The memory chips have quadrangular surface areas, and are superposed on the substrate on a first major side of the controller chip. The first major side defines a first direction and a first controller terminal block is formed along a first minor side thereof orthogonal to the first direction, and a second controller terminal block is formed along a second major side opposite to the first major side.
US09305899B2

A method of fabricating a semiconductor package includes providing a wafer which includes an upper area having through silicon vias (TSVs) and a lower area not having the TSVs; mounting a semiconductor chip on the upper area of the wafer; forming a passivation layer to a predetermined thickness to cover the semiconductor chip; exposing the TSVs by removing the lower area of the wafer in a state where no support is attached to the wafer; and exposing a top surface of the semiconductor chip by partially removing the passivation layer.
US09305898B2

A semiconductor device includes a lead frame, and an integrated circuit die. The lead frame has a flag for supporting the die and leads that surround that flag and die. The lead frame also has ground ring that surrounds the flag and die. First bond wires electrically connect the die to the lead frame leads. An insulating layer is disposed on the ground ring, and a power layer is disposed on the insulating layer. The semiconductor device further includes second bond wires that connect the die to the ground ring and third bond wires that connect the die to the power layer.
US09305897B2

A semiconductor device includes a wafer level substrate having a plurality of first conductive vias formed through the wafer level substrate. A first semiconductor die is mounted to the wafer level substrate. A first surface of the first semiconductor die includes contact pads oriented toward a first surface of the wafer level substrate. A first encapsulant is deposited over the first semiconductor die. A second semiconductor die is mounted to the wafer level substrate. A first surface of the second semiconductor die includes contact pads oriented toward a second surface of the wafer level substrate opposite the first surface of the wafer level substrate. A second encapsulant is deposited over the second semiconductor die. A plurality of bumps is formed over the plurality of first conductive vias. A second conductive via can be formed through the first encapsulant and connected to the first conductive via. The semiconductor packages are stackable.
US09305896B2

A preassembly semiconductor device comprises chip soldering structures on a semiconductor chip and substrate soldering structures on a substrate corresponding to the chip soldering structures. The substrate soldering structures extend toward the chip soldering structures for forming solder connections with the chip soldering structures. The chip and the substrate are in preassembly positions relative to one another. The height of the substrate soldering structures is greater than the height of the chip soldering structures. A pre-applied underfill is contiguous with the substrate and is sufficiently thick so as to extend substantially no further than the full height of the substrate soldering structures. In another embodiment the height of the chip soldering structures is greater than the height of the substrate soldering structures and the pre-applied underfill is contiguous with the semiconductor chip and sufficiently thick so as to extend substantially no further than the full height of the chip soldering structures. A process comprises manufacturing semiconductor assemblies from these devices by soldering the chip and the substrate to one another
US09305895B2

A package substrate includes a core layer having a first surface and a second surface which are opposite to each other, a ball land pad disposed on the first surface of the core layer, an opening that penetrates the core layer to expose the ball land pad, and a dummy ball land disposed on the second surface of the core layer to surround the opening. The dummy ball land includes at least one sub-pattern and at least one vent hole. Related semiconductor packages and related methods are also provided.
US09305891B2

A semiconductor integrated circuit is provided. In the semiconductor integrated circuit, each of ESD protection circuitries is disposed between two of TSV bumps arrayed in a matrix, the two being arranged adjacent to each other. First main power lines are disposed to overlap P-channel ESD protection elements. Second main power lines are disposed to overlap N-channel ESD protection elements. The first and second main power lines are arranged orthogonally to each other.
US09305877B1

A package, comprising a substrate having electrical devices disposed at a first side of the substrate, vias extending from the first side of the substrate to a second side of the substrate opposite the first side and metallization layers disposed on the first side of the substrate. Contact pads are disposed over the first metallization layers and a protection layer is disposed over the contact pads. Post-passivation interconnects are disposed over the protection layer and extend to the contact pads through openings in the protection layer. Connectors are disposed on the PPIs and a molding compound extends over the PPIs and around the connectors.
US09305876B2

A device includes a carrier, a first semiconductor chip arranged over the carrier and a first electrically conductive element arranged over the carrier. The device further includes a first wire electrically coupled to the first electrically conductive element and a second wire electrically coupled to the first electrically conductive element and to the first semiconductor chip. The first electrically conductive element is configured to forward an electrical signal between the first wire and the second wire.
US09305873B1

A method of manufacture of an integrated circuit packaging system includes: forming an isolated contact having a contact protrusion, the contact protrusion having a lower protrusion surface, an upper protrusion surface, and a protrusion sidewall; forming a die paddle, adjacent to the isolated contact, having a die paddle protrusion, the die paddle protrusion having a lower die protrusion surface, an upper die protrusion surface, and a die protrusion sidewall; depositing a contact pad on the contact protrusion; depositing a die paddle pad on the die paddle protrusion; coupling an integrated circuit die to the contact protrusion; and molding an encapsulation on the integrated circuit die.
US09305871B2

A plastic package for high power has a pair of oblong metal pins exposed from a surface of the plastic, the pins straddling a corner of the package; each pin has a long axis, the long axes of the pair forming a non-orthogonal angle. Package further includes a chip assembly pad, acting as a thermal spreader and semiconductor chip.
US09305870B2

A preparation method for a power semiconductor device includes: providing a lead frame containing a plurality of chip mounting units, one side edge of a die paddle of each chip mounting unit is bent and extended upwardly and one lead connects to the bent side edge of the die paddle and extends in an opposite direction from the die paddle; attaching a semiconductor chip to the top surface of the die paddle; forming metal bumps on each electrode at the front of the semiconductor chip with a top end of each metal bump protruding out of a plane of the top surface of the lead; heating the metal bump and pressing a top end of each metal bump by a pressing plate forming a flat top end surface that is flush with the top surface of the lead; and cutting the lead frame to separate individual chip mounting units.
US09305864B2

Through silicon via (TSV) isolation structures are provided and suppress electrical noise such as may be propagated through a semiconductor substrate when caused by a signal carrying active TSV such as used in 3D integrated circuit packaging. The isolation TSV structures are surrounded by an oxide liner and surrounding dopant impurity regions. The surrounding dopant impurity regions may be P-type dopant impurity regions that are coupled to ground or N-type dopant impurity regions that may advantageously be coupled to VDD. The TSV isolation structure is advantageously disposed between an active, signal carrying TSV and active semiconductor devices and the TSV isolation structures may be formed in an array that isolates an active, signal carrying TSV structure from active semiconductor devices.
US09305861B2

A chip and a chip package can transmit information to each other by using a set of converters capable of communicating with each other through the emission and reception of electromagnetic signals. Both the chip and the chip package have at least one such converter physically disposed on them. Each converter is able to (1) convert received electromagnetic signals into electronic signals, which it then may relay to leads on the device on which it is disposed; and (2) receive electronic signals from leads on the device on which it is disposed and convert them into corresponding electromagnetic signals, which it may transmit to a corresponding converter on the other device. Not having a direct physical connection between the chip and the chip package decreases the inductive and capacitive effects commonly experienced with physical bonds.
US09305852B1

An electronic system comprises a first chip (101) of single-crystalline semiconductor including a first electronic device embedded in a second chip (102) of single-crystalline semiconductor shaped as a container having a slab (104) bordered by ridges (103), and including a second electronic device. The nested chips are assembled in a container of low-grade silicon shaped as a slab 130 bordered by retaining walls 131 and including conductive traces and terminals. The first electronic device is connected to the second electronic device by attaching the first chip onto the slab of the second chip; and the first and second electronic devices are connected to the container by embedding the second chip in the container, wherein the nested first and second chips operate as an electronic system and the container operates as the package of the system. For first and second devices as field effect transistors, the system is a power block.
US09305851B2

Systems and methods are provided for performing chemical-mechanical planarization on an article. An example system for performing chemical-mechanical planarization on an article includes a polishing head configured to perform a chemical-mechanical planarization (CMP) on an article, a polishing pad configured to support the article, a light source configured to emit an incident light, a polishing fluid including a plurality of emitter particles capable of emitting a fluorescent light in response to the incident light, a fluorescence light detector configured to detect the fluorescent light, and at least one processor configured to control the polishing head based on the detected fluorescent light.
US09305849B1

A monolithic three dimensional NAND string includes a semiconductor channel, an end part of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate, a charge storage material layer located between the plurality of control gate electrodes and the semiconductor channel, a tunnel dielectric located between the charge storage material layer and the semiconductor channel, and a blocking dielectric containing a plurality of clam-shaped portions each having two horizontal portions connected by a vertical portion. Each of the plurality of control gate electrodes are located at least partially in an opening in the clam-shaped blocking dielectric, and a plurality of discrete cover oxide segments embedded in part of a thickness of the charge storage material layer and located between the blocking dielectric and the charge storage material layer.
US09305838B2

An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
US09305834B1

Methods for fabricating integrated circuits using directed self-assembly to form via and contact holes are disclosed. An exemplary method includes determining a natural, hexagonal separation distance L0 between cylinders formed in a block copolymer (BCP) material during directed self-assembly (DSA) and determining an integrated circuit feature pitch PA according to the following formula: PA=L0*(sqrt(3)/2)*n, wherein n is a positive integer. The method further includes generating an integrated circuit layout design better accommodating the natural formation arrangement of polymeric cylinders, wherein integrated circuit features are spaced in accordance with the integrated circuit feature pitch PA and wherein via or contact structures are physically and electrically connected to the integrated circuit features and fabricating the integrated circuit features and the via or contact structures on a semiconductor work-in-process (WIP) in accordance with the integrated circuit layout design, wherein the via or contact structures are fabricated utilizing DSA with BCP material.
US09305832B2

Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
US09305829B2

A semiconductor package includes a substrate, at least one electronic device, a lead frame, and a molded portion. The substrate has at least one indented portion formed as a groove therein. The electronic device is mounted on one surface of the substrate. The lead frame is bonded to the substrate and electrically connected to the electronic device. The molded portion seals the lead frame and the electronic device and includes at least one through hole extending the indented portion.
US09305826B2

A method of forming a substrate with isolation areas suitable for integration of electronic and photonic devices is provided. A common reticle and photolithographic technique is used to fabricate a mask defining openings for etching first and second trench isolation areas in a substrate, with the openings for the second trench isolation areas being wider than the openings for the first trench isolation areas. The first and second trench isolation areas are etched in the substrate through the mask. The second trench isolation areas are further etched to the deeper than the first trench isolation areas. The trench isolation areas are filled with oxide material. Electrical devices can be formed on the substrate and electrically isolated by the first trench isolation areas and photonic devices can be formed over the second trench isolation areas and be optically isolated from the substrate.
US09305819B2

A first transfer apparatus unloads and transfers substrates from a cassette. A first accommodating unit accommodates the substrates. First substrate processing units divided into at least two groups and arranged in a height direction performs a process to the substrates. Second accommodating units respectively corresponding to the groups are arranged to be parallel with the first accommodating unit in the height direction. Second transfer apparatuses respectively corresponding to the groups unload and transfer the substrates from the second accommodating units corresponding to the same groups into the first substrate processing units of the same groups. Second substrate processing units respectively corresponding to the groups are arranged to be parallel with the first and second accommodating units in the height direction. A delivery apparatus delivers the substrates between the first and second accommodating units and transfers the substrates between the first accommodating unit and the second substrate processing units.
US09305816B2

A method includes identifying a wafer position for a plurality of die on a wafer, storing the wafer position for each of the plurality of die in a database, dicing the wafer into a plurality of singulated die, positioning each of the singulated die in a die position location on a tray, and storing the die position on the tray for each of the singulated die in the database. The database includes information including the wafer position associated with each die position. The tray is transported to a processing tool, and at least one of the plurality of singulated die is removed from the die position on the tray and processed in the processing tool. The processed singulated die is replaced in the same defined location on the tray that the singulated die was positioned in prior to the processing. Other embodiments are described and claimed.
US09305810B2

Embodiments of the invention relate to a gas delivery system. The gas delivery system includes a fast gas exchange module in fluid communication with one or more gas panels and a process chamber. The fast gas exchange module has first and second sets of flow controllers and each of first and second sets of flow controllers has multiple flow controllers. The flow controller is configured such that each of the flow controllers in the first and second sets of the flow controllers is independently operated to selectively open to divert gas to the process chamber or an exhaust. The first and second sets of flow controllers are operated for synchronized switching of gases in a pre-determined timed sequence of flow controller actuation. The invention enables fast switch of resultant gas flow in the process chamber while having individual flow controller operated at lower switching speed to provide longer service life.
US09305807B2

Charge-encoded chiplets are produced using a sacrificial metal mask and associated fabrication techniques and materials that are compatible with typical semiconductor fabrication processes to provide each chiplet with two different (i.e., positive and negative) charge polarity regions generated by associated patterned charge-inducing material structures. A first charge-inducing material having a positive charge polarity is formed on a silicon wafer over previously-fabricated integrated circuits, then a sacrificial metal mask is patterned only over a portion of the charge-inducing material structure, and a second charge-inducing material structure (e.g., a self-assembling octadecyltrichlorosilane monolayer) is deposited having a negative charge polarity. The sacrificial metal mask is then removed to expose the masked portion of the first charge-inducing material structure, thereby providing the chiplet with both a positive charge polarity region and a negative charge polarity region.
US09305792B2

Disclosed herein is an etching composition for texturing a crystalline silicon wafer, comprising, based on a total amount of the composition: (A) 0.1 to 20 wt % of an alkaline compound; (B) 0.1 to 50 wt % of a cyclic compound having a boiling point of 100° C. or more; (C) 0.00001 to 10 wt % of a silica-containing compound; and (D) residual water. The etching composition can maximize the absorbance of light of the surface of a crystalline silicon wafer.
US09305790B2

The device for knife coating a layer of ink based on copper and indium on a substrate includes a supply tank of an ink, said tank collaborating with a coating knife. In addition, the device includes means that allow the ink, the substrate and the coating knife to be kept at different and increasing respective temperatures.
US09305782B2

A method for patterning a layer increases the density of features formed over an initial patterning layer using a series of self-aligned spacers. A layer to be etched is provided, then an initial sacrificial patterning layer, for example formed using optical lithography, is formed over the layer to be etched. Depending on the embodiment, the patterning layer may be trimmed, then a series of spacer layers formed and etched. The number of spacer layers and their target dimensions depends on the desired increase in feature density. An in-process semiconductor device and electronic system is also described.
US09305778B2

A method of controlling a growth crystallographic plane of a metal oxide semiconductor having a wurtzite crystal structure by using a thermal chemical vapor deposition method includes controlling a growth crystallographic plane by allowing the metal oxide semiconductor to grow in a non-polar direction by using a source material including a thermal decomposition material that reduces a surface energy of a polar plane of the metal oxide semiconductor.
US09305773B2

According to one embodiment, a semiconductor device includes a functional layer of a nitride semiconductor. The functional layer is provided on a nitride semiconductor layer including a first stacked multilayer structure provided on a substrate. The first stacked multilayer structure includes a first lower layer, a first intermediate layer, and a first upper layer. The first lower layer contains Si with a first concentration and has a first thickness. The first intermediate layer is provided on the first lower layer to be in contact with the first lower layer, contains Si with a second concentration lower than the first concentration, and has a second thickness thicker than the first thickness. The first upper layer is provided on the first intermediate layer to be in contact with the first intermediate layer, contains Si with a third concentration lower than the second concentration, and has a third thickness.
US09305767B2

There is provided a liquid processing apparatus including a rotation unit configured to hold the target substrate and rotate the target substrate around a vertical axis; a processing solution supply nozzle configured to supply the processing solution to the surface of the target substrate being rotated; a first gas supply unit configured to form a downward flow of a first gas that flows over the entire surface of the target substrate and is introduced into a cup in order to form a processing atmosphere suitable for a liquid process to be performed; and a second gas supply unit configured to form a downward flow of a second gas different from the first gas in a region outside the downward flow of the first gas. The first gas supply unit and the second gas supply unit are provided at a ceiling portion of the housing serving as the processing space.
US09305750B2

A plasma processing system for generating plasma to process at least a wafer. The plasma processing system may include a first coil for conducting a first current for sustaining at least a first portion of the plasma. The plasma processing system may also include a second coil for conducting a second current for sustaining at least a second portion of the plasma. The plasma processing system may also include a power source for powering the first current and the second current. The plasma processing system may also include a parallel circuit for adjusting one of the amperage of the first current and the amperage of the second current. The parallel circuit may be electrically coupled between the power source and at least one of the first coil and the second coil. The parallel circuit may include an inductor and a variable capacitor electrically connected in parallel to each other.
US09305728B2

An electromagnetic actuating apparatus with a first armature arrangement axially displaced between a rest and actuating position and connected to a first actuating element. A pole core is brought into magnetic operative connection with the first armature arrangement. An axially oriented coil unit is energized, influencing the magnetic connection between the first pole core and the first armature arrangement, and a second armature arrangement is connected to a second actuating element and axially displaced between a rest and actuating position. A second pole core can be brought into magnetic operative connection with second armature arrangement, its pole core oriented axially to first pole core influencing its magnetic operative connection with second armature arrangement. A permanent magnet unit, the magnet axis is oriented radially and stationary, generates magnetic operative connection both between the first pole core and first armature arrangement and between the second pole core and second armature arrangement.
US09305727B2

Applicant has created systems, methods, and apparatuses for controlling the power supply of a vacuum cleaner motor. The systems and apparatuses include pressure taps to detect a pressure differential within a vacuum cleaner, a float that adjusts depending on an amount of liquid stored, and a power switch that toggles based on the pressure differential created by the position of the float. Alternatively, the float can be replaced by an air chamber so that the pressure differential is created by liquid rising above the volume of air trapped in the chamber. The method can include interrupting the current supplied to an electrical circuit of a power switch based upon a pressure differential created within the vacuum. By controlling the power supply to a vacuum cleaner motor based on a pressure differential created by the amount of liquid stored within the vacuum cleaner, the vacuum cleaner can automatically disable the vacuum cleaner's motor as the vacuum approaches its maximum liquid capacity.
US09305724B2

A circuit breaker includes: a first arc-extinguishing chamber and a second arc-extinguishing chamber that interrupt a current by opening contact points and extinguish an arc during the current is being interrupted; and a connection unit that connects the first arc-extinguishing chamber and the second arc-extinguishing chamber to each other. The first arc-extinguishing chamber and the second arc-extinguishing chamber are connected to the connection unit in such a manner that shaft lines of the arc-extinguishing chambers form an angle of substantially 90 degrees. The first arc-extinguishing chamber is arranged on a side of the connection unit in such a manner that the shaft line thereof is substantially horizontal, and the second arc-extinguishing chamber is arranged on an upper side of the connection unit in such a manner that the shaft line thereof is substantially vertical.
US09305718B2

An electromagnetic relay, includes: a first movable contact that comes in contact with a first fixed contact; a second movable contact that comes in contact with a second fixed contact; a first elastic body that biases the first movable contact; a second elastic body that biases the second movable contact; a pressing member that presses the first elastic body and contacts the first movable contact to the first fixed contact, presses the second elastic body and contacts the second movable contact to the second fixed contact; wherein the pressing member contacts the second movable contact to the second fixed contact before contacting the first movable contact to the first fixed contact.
US09305706B2

Disclosed is a fractional order capacitor comprising a dielectric nanocomposite layer of thickness t, comprising a first side, and a second side opposite the first side, a first electrode layer coupled to the first side of the dielectric nanocomposite layer, a second electrode layer coupled to the second side of the dielectric nanocomposite layer, a complex impedance phase angle dependent on at least a material weight percentage of filler material in a dielectric nanocomposite layer.
US09305703B2

A wire disposing assembly having a support, an axial traverser sub-assembly, a support arm, and a linear stage is provided. The support is configured to receive a plurality of turns of a wire, where the support is configured to rotate. The axial traverser sub-assembly is operatively coupled to the support. Further, a rate of motion of the axial traverser sub-assembly is coupled to a speed of rotation of the support. The support arm includes a resin unit configured to dispose resin on at least a portion of the wire, and a wire disposing device configured to guide a portion of the wire being disposed on a surface of the support. The linear stage is operatively coupled to the support arm.
US09305699B2

A transformer driver circuit couples to a transformer having a primary winding, a secondary winding, and a transformer tap that is connected to a first voltage source. The primary winding electrically connects at its ends to respective unipolar controllable current sinks that form part of an integrated circuit. The transformer driver circuit operates by each current sink selectively sinking current from the end of the primary winding to which it is connected so as to cause current to flow in the secondary winding in a push-pull fashion. The transformer driver circuit further includes a load electrically connected to the secondary winding and protection circuitry operative to protect the integrated circuit from input levels greater than it can withstand.
US09305697B2

An integrated transformer comprising a primary coil and a secondary coil, the primary coil comprising a first subsection and a second subsection, the first subsection extending in a different plane to a plane in which the second subsection extends, the planes spaced from one another, the secondary coil comprising a first subsection and a second subsection, the first subsection extending in a different plane to a plane in which the second subsection extends, the planes spaced from one another, wherein the first subsection of the primary coil is stacked with the second subsection of the secondary coil and the second subsection of the primary coil is stacked with the first subsection of the secondary coil.
US09305694B2

An oil-immersed solenoid is provided with a casing including a base, a cylinder, and a flange in an integral manner, a fixed magnetic pole, a plunger having an armature, a guide pipe, a coil unit including a bobbin around which a coil is wound, and a cover, the fixed magnetic pole is integrated with the casing, and in the state where the plunger, the guide pipe, the coil unit, and the cover are attached in the cylinder of the casing, a front end of the cylinder is swaged, thereby holding the plunger, the guide pipe, the coil unit, and the cover in the casing.
US09305692B2

A magnetic ionization device is disclosed that reduces harmful Greenhouse Gases produced by the incomplete combustion of liquid or gaseous fossil fuels and increases performance efficiency. The magnetic ionization device comprises a pair of brackets secured together around a natural gas line, and at least two permanent rare earth magnet secured to the pair of brackets. The pair of brackets each comprises an interior surface and an exterior surface, and are generally curved or C-shaped. Furthermore, the brackets comprise a recess for receiving a portion of a natural gas line. Once the permanent rare earth magnets are secured to the brackets, the brackets and magnets can be coated with plastic, powder metal, or any other suitable protective layer as is known in the art. The pair of brackets is then secured together around a natural gas line via plastic ties, nuts, bolts, and/or washers, etc.
US09305687B2

A resistor device includes a resistor plate having opposite first and second surfaces; a first metal layer including first and second portions which are disposed on the first surface of the resistor plate at opposite first and second sides, respectively; and a second metal layer including a first sensing pad, a second sensing pad, a first current pad and a second current pad, separate from one another, wherein the first sensing pad and the first current pad are disposed on the first portion of the first metal layer and the second sensing pad and the second current pad are disposed on the second portion of the first metal layer. A protective layer is preferably provided, overlying the resistor plate and the first metal layer uncovered by the second metal layer.
US09305686B2

There are provided a multilayer ceramic electronic component that does not require a heat treatment under a reduction atmosphere, and a manufacturing method thereof, wherein a conductive oxide is used as a material of internal and external electrodes and conductive layers having elasticity are formed on the external electrodes. In the case of the multilayer ceramic electronic component, a firing process may be performed under an air atmosphere, such that a manufacturing process may be simplified and manufacturing costs may be reduced.
US09305668B2

A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.
US09305667B1

Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.
US09305666B2

Embodiments are directed towards managing data storage that may experience a data failure. If a repair event is associated with a data storage failure, a new repair task may be generated and added to a task list. A priority value for each repair task in the task list may be determined based in part on the mean-time-to-data-loss (MTTDL) value associated with each repair task in the task list such that a lower MTTDL may indicate a higher priority value over a lower MTTDL. One or more repair tasks may be promoted to become active repair tasks based on the priority value the repair tasks such that the promoted repair tasks have a higher priority that than other repair tasks in the task list, if any. Each active repair task may be executed to repair one or more associated the storage failures.
US09305665B2

According to one embodiment, when loading of reverse lookup information from a nonvolatile first memory to a randomly accessible second memory has failed, a controller determines whether data at a first physical address is valid or invalid by using lookup information loaded from the first memory to the second memory.
US09305660B2

Apparatus and methods for determining pass/fail condition of memories facilitate array efficiencies. In at least one embodiment, a set of common lines, one for each rank of page buffers corresponding to a page, determine the pass/fail status of all connected memory cells, and the pass/fail status results for each line can be combined to determine a pass/fail for the page of memory.
US09305659B2

A memory device has an array of memory cells and a controller coupled to the array of memory cells. The controller is configured to determine a program window after a portion of a particular programing operation performed on the memory device is performed and before a subsequent portion of the particular programing operation performed on the memory device is performed. The controller is configured to determine the program window responsive to an amount of program disturb experienced by a particular state of a memory cell. The controller is configured to perform the subsequent portion of the particular programing operation performed on the memory device using the determined program window.
US09305656B2

Methods applying a non-zero voltage differential across a memory cell not involved in an access operation can facilitate improved data retention characteristics.
US09305655B2

Reduced spatial redundancy of lower bits data provides data protection for a flash memory having MLC NAND devices operated in page mode. An interrupted write operation of most significant bit pages can corrupt previously written data in lower bit pages. The lower bits redundant memory assists in restoring the data, using less than a full back up storage.
US09305652B2

Provided is a semiconductor memory device and a method of erasing the same. The semiconductor memory device includes a memory cell array including a plurality of memory cells; and a peripheral circuit unit configured to apply a pre-erase voltage, an erase voltage, and an erase operation voltage to the memory cell array so as to erase data stored in the plurality of memory cells when an erase operation is performed. The memory cell array includes a plurality of source selection transistors, the plurality of memory cells, and a plurality of drain selection transistors that are connected between a source line and a bit line. When the pre-erase voltage is applied to the source line during the erase operation, different erase operation voltages are applied to an outermost source selection transistor adjacent to the source line among the plurality of source selection transistor and the other selection transistors.
US09305646B2

A semiconductor memory device according to an embodiment comprises a memory cell and a control circuit, the control circuit performing write of data to the memory cell. The memory cell includes a second resistance varying layer sandwiched between a first resistance varying layer and a third resistance varying layer. The second resistance varying layer has a resistance value which is smaller than that of the other resistance varying layers. The control circuit applies to the memory cell a first voltage pulse, and then applies to the memory cell a second voltage pulse that has a rise time which is shorter than that of the first voltage pulse.
US09305643B2

A method can include determining at least one use characteristic for the memory cells comprising a solid electrolyte, the use characteristic corresponding to a number of times the memory cells have been programmed to at least one impedance level; and adjusting a read threshold level for the memory cells based on at least the use characteristic, the read threshold level determining data values stored in the memory cells in a read operation.
US09305640B2

Disclosed is a system and method for reading flash memory cells with dynamically adjusted probability values (e.g., log-likelihood ratios). In connection with reading bit values from flash memory cells, one or more predetermined first probability values are adjusted relative to one or more predetermined second probability values. The one or more predetermined first probability values are associated with reading one or more memory cells programmed to a first binary value, and the one or more predetermined second probability values are associated with reading one or more memory cells programmed to a second binary value. The plurality of bit values read from the plurality of non-volatile memory cells and the one or more adjusted first probability values are provided to a decoder for use in decoding the plurality of bit values.
US09305639B2

A method and apparatus for detecting N-symbol codewords. The method including: reading q-level memory cells to obtain a read signal having N signal components; detecting the memory cell level corresponding to each component using a first correspondence criterion dependent on reference signal levels; identifying unreliable components; detecting, for each unreliable component, the next-most-closely corresponding memory cell level according to the first correspondence criterion; defining a set of ordered codeword vectors having N symbols corresponding to respective components of the read signal ordered according to a signal level, wherein the symbol values in each ordered codeword vector correspond to one combination of detected memory cell levels; defining, for each read signal, candidate initial vectors having intersected the ordered codeword vectors and plurality of initial vectors; and detecting, if the candidate initial vectors contains a vector, the codeword corresponding to that read signal that depends on the candidate initial vectors.
US09305638B1

Operation methods for a memory device is provided. An operation method for the memory device comprises programming the memory device as described in follows. Data are provided. The data comprise a plurality of codes. Each number of the codes is counted. Then, a mapping rule is generated according to each number of the codes. In the mapping rule, each of the codes is mapped to one of a plurality of verifying voltage levels which are sequentially arranged from low to high. After that, the data are programmed into the memory device according to the mapping rule.
US09305635B2

A semiconductor memory comprises a plurality of sub banks each including one or more rows of memory bit cells connected to a set of local bit lines, wherein the sub banks share a same set of global bit lines for reading/writing data from/to the memory bit cells of the sub banks. The semiconductor memory chip further comprises a plurality of switch elements for each of the sub banks, wherein each of the switch elements connects the local bit line and the global bit line of a corresponding one of the memory bit cells in the sub bank for data transmission between the local bit line and the global bit line. The semiconductor memory chip further comprises a plurality of bank selection signal lines each connected to the switch elements in a corresponding one of the sub banks, wherein the bank selection signal lines carry a plurality of bank selection signals to select one of the sub banks for data transmission between the local bit lines and the global bit lines.
US09305633B2

Embodiments include an array of SRAM cells, an SRAM cell, and methods of forming the same. An embodiment is an array of static random access memory (SRAM) cells including a plurality of overlapping rectangular regions. Each of overlapping rectangular regions including an entire first SRAM cell, a portion of a second adjacent SRAM cell in a first corner region of the rectangular region, and a portion of a third adjacent SRAM cell in a second corner region of the rectangular region, the second corner region being opposite the first corner region. Embodiments also include multi-finger cell layouts.
US09305631B1

Provided is a profiling unit and method for profiling a number of times that an input/output address of a semiconductor device is accessed. The profiling unit includes a hash unit configured to produce at least one hash value by perform a hash operation on the input/output address, and a profiling circuit configured to profile the number of times that the input/output address is accessed by using the at least one hash value.
US09305629B2

An embodiment provides power (having low voltage, high current, and high current density) to ultra low voltage non-CMOS based devices using a distributed capacitor that is integrated onto the same chip as the non-CMOS devices. For example, an embodiment provides a spin logic gate adjacent dielectric material and first and second plates of a capacitor. The capacitor discharges low voltage/high current to the spin logic gate using a step down switched mode power supply that charges numerous capacitors during one clock cycle (using a switching element configured in a first orientation) and discharges power from the capacitors during the opposite clock cycle (using the switching element configured in a second orientation). The capacitors discharge the current out of plane and to the spin logic devices without having to traverse long power dissipating interconnect paths. Other embodiments are described herein.
US09305628B2

MRAM cell including a magnetic tunnel junction including a sense layer, a storage layer, a tunnel barrier layer and an antiferromagnetic layer exchange-coupling the storage layer such that the storage magnetization can be pinned when the antiferromagnetic layer is below a critical temperature and freely varied when the antiferromagnetic layer is heated at or above the critical temperature. The sense layer is arranged such that the sense magnetization can be switched from a first stable direction to another stable direction opposed to the first direction. The switched sense magnetization generates a sense stray field being large enough for switching the storage magnetization according to the switched sense magnetization, when the magnetic tunnel junction is heated at the writing temperature. The disclosure also relates to a method for writing to the MRAM cell with increased reliability and reduced power consumption.
US09305608B2

A memory device may including a first local bit line electrically connected with a first memory cell, a first global bit line electrically connected with the first local bit line, a second local bit line electrically connected with a second memory cell, and a second global bit line electrically connected with the second local bit line. The first global bit line is primarily charged with electric charge. The first global bit line and the second global bit line share the primarily charged electric charge. The second global bit line is secondarily charged with the electric charge.
US09305606B2

A memory module houses stacked memory devices and a memory controller each having a near-field interface coupled to loop antennas to communicate over-the-air data. A coil is formed on a memory device substrate or molded into a plastic mold to create near-field magnetic coupling with the stacked memory devices and the memory controller.
US09305605B2

The present invention discloses a discrete three-dimensional vertical memory (3D-MV). It comprises at least a 3D-array die and at least a peripheral-circuit die. The 3D-array die comprises a plurality of vertical memory strings. At least an off-die peripheral-circuit component of the 3D-MV arrays is located on the peripheral-circuit die instead of the 3D-array die. The 3D-array die and the peripheral-circuit die have substantially different back-end-of-line (BEOL) structures.
US09305603B2

Embodiments including a method and apparatus for indexing a video stream are disclosed. In one embodiment, a method for indexing a video stream comprises accessing a video stream comprising a plurality of frames. For each frame, the method determines salient points computes a cross entropy value for each salient point, and sums the cross entropy values to form a frame information number. A sequence of frame information numbers for the plurality of frames in the video streams forms an index value for the video stream.
US09305591B2

A magnetic recording device includes a preprocessor, an interpolator and a slicer. The preprocessor receives at least n saturated input signals including an nth saturated input signal The preprocessor is configured to process each of the n saturated input signals to produce a corresponding nth output signal. The n output signals include an nm output signal from the nth saturated input signal. The interpolator processes the nth output signal to determine an nth interpolator output. The slicer determines an nth slicer output for the nh output signal. The nth slicer output is at one of three different levels. The preprocessor can receive and process an n +1th saturated input signal to produce an n +1th output signal that is based on a difference between the nth interpolator output and the level of the nth slicer output.
US09305589B2

A rotation driving system and a method to determine the presence of a rotator on a turntable are provided. The rotation driving system includes an encoder to detect rotation information of a motor, and a controller to determine whether or not a rotator is present on a turntable and also, to adjust a gain of the motor according to moment of inertia of the rotator.
US09305585B2

The present invention provides a recording device that offers a large displacement control effect. The recording device includes a recording medium 224, a motor 222 that drives the recording medium, and a recording device head M1 that records and reproduces a signal to and from the recording medium. The recording device also has a displacement control mechanism M2. The displacement control mechanism M2 includes a vibrating plate 226 that has two opposing surfaces facing the recording medium, the vibrating plate being displaced in the rotation axis direction of the recording medium; and an oscillator 232 that is positioned away from the two opposing surfaces of the vibrating plate facing the recording medium, the oscillator driving and displacing the vibrating plate.
US09305568B2

There is disclosed active acoustic filter systems and methods. A processor is disposed within a housing configured to interface with a user's ear. A memory stores data defining one or more locations and a respective set of location-based processing parameters associated with each of the one or more locations. A personal computing device external to the housing is coupled to the processor via a first wireless communications link. The personal computing device determines a current location of the active acoustic filter system. The processor generates digitized processed sound by processing digitized ambient sound in accordance with a set of location-based processing parameters retrieved from the memory, the retrieved set of location-based processing parameters associated with the current location of the active acoustic filter system as determined by the personal computing device.
US09305566B2

A computing part computes a correlation coefficient representing a level of correlation among acoustic signals for a plurality of channels. A filtering part smoothes a time variation of the correlation coefficient computed. A center component reducer reduces a correlation component that is common in the acoustic signals by using the correlation coefficient. Then, the correlation component extracted by the reducer is reduced from each of the acoustic signals.
US09305562B2

A computing system is described that includes a main system bus that remains active while said computing system operates within a non main CPU/OS based operational state. The computing system also includes a controller that operates functional tasks while the computing system is within the non main CPU/OS based operational state. The computing system also includes an I/O unit coupled to the main system bus that remains active while the computing system operates within the non main CPU/OS based operational state.
US09305558B2

The invention includes several techniques and tools, which can be used in combination or separately. For example, an audio encoder can encode information directly using coding processes that include a windowed overlapped transform, a selective multi-channel transform, scalar quantization and entropy encoding. The audio encoder can also encode information parametrically according to a parametric compression mode that accounts for audibility of distortion according to an auditory model. A corresponding audio decoder can decode first information directly and second information according to the parametric decompression mode.
US09305552B2

Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for captioning a media presentation. The method includes receiving automatic speech recognition (ASR) output from a media presentation and a transcription of the media presentation. The method includes selecting via a processor a pair of anchor words in the media presentation based on the ASR output and transcription and generating captions by aligning the transcription with the ASR output between the selected pair of anchor words. The transcription can be human-generated. Selecting pairs of anchor words can be based on a similarity threshold between the ASR output and the transcription. In one variation, commonly used words on a stop list are ineligible as anchor words. The method includes outputting the media presentation with the generated captions. The presentation can be a recording of a live event.
US09305545B2

A method for vocabulary integration of speech recognition comprises converting multiple speech signals into multiple words using a processor, applying confidence scores to the multiple words, classifying the multiple words into a plurality of classifications based on classification criteria and the confidence score for each word, determining if one or more of the multiple words are unrecognized based on the plurality of classifications, classifying each unrecognized word and detecting a match for the unrecognized word based on additional classification criteria, and upon detecting a match for an unrecognized word, converting at least a portion of the multiple speech signals corresponding to the unrecognized word into words.
US09305537B2

A signal processing apparatus (100) comprising a noise detector (102) configured to: receive a stream of information representative of a stream of audio signal samples (112); and detect samples in the received stream of information (112) that are distorted by impulse noise in order to generate a noise detection signal (114), wherein the noise detection signal (114) also identifies preceding and succeeding samples that are undistorted. The signal processing apparatus (100) also comprises a processor (104) configured to replace distorted samples in the received stream of information with composite predicted values (426; 526) to provide a reconstructed stream of audio signal samples (116).
US09305524B2

An electronic musical instrument capable of suppressing resonance of a soundboard and reducing a peak dip of the frequency characteristic of a musical tone to enable excellent musical sound to be obtained. The soundboard has first and second ends which extend parallel to each other. The first and second ends are secured to a predetermined part of the instrument by first screws and second screws. A vibration exciter is provided on the soundboard and driven according to a musical tone signal to vibrate the soundboard to cause the soundboard to generate a musical tone. The first and second screws are arranged along the respective first and second ends in a staggered manner such that each first screw and each first screw are not opposed to each other in symmetrical relation in a direction orthogonal to the first and second ends.
US09305519B2

An image color adjusting method and an electronic device thereof are provided. The image color adjusting method includes following steps: obtaining multiple groups of first pixel data of an image in a first color space, and performing a color space transforming process for the first pixel data to obtain multiple groups of second pixel data of the image in a CIELAB color space, wherein each of the second pixel data includes a luminance component L*, a first color component a* and a second color component b*; adjusting the first color component and the second color component of the second pixel data to obtain multiple groups of third pixel data, and performing a color space transforming process for the third pixel data to obtain multiple groups of fourth pixel data corresponding to the third pixel data in the first color space.
US09305516B1

According to one embodiment, an electronic device comprises, as an example, a memory, a receiver, and a transmitter. The memory is configured to store therein first extended display identification data (EDID) and second EDID comprising a different version of the High-Definition Multimedia Interface (HDMI) from the first EDID. The receiver is configured to receive a video signal from another electronic device. The transmitter is configured to send the first EDID comprising an identification bit to the another electronic device, the another electronic device being configured to respond to the identification bit when the another electronic device supports the version of the HDMI of the second EDID, and to send the second EDID to the another electronic device when the receiver has received a response corresponding to the identification bit from the another electronic device.
US09305513B1

A method of controlling an electrowetting display device with display elements arranged in a matrix with n rows. In examples each display element is addressable with a voltage pulse having a pulse duration longer than Tf/n, where Tf is a pre-determined frame period for addressing the n rows. In examples the pulse duration may be longer than ReCe, with Re being an electrical resistance of an electrically conductive fluid of a display element and Ce being an electrical capacitance of a capacitor of the display element.
US09305506B2

Electronic devices with a VCOM display panel are configured to provide a common voltage VCOM to a VCOM display panel backplane, referred to as a VCOM reference plane. The common voltage is supplied by a VCOM application circuit coupled to the VCOM reference plane. The VCOM application circuit includes a linear amplifier, such as a Class AB amplifier, coupled to a switched transient assist circuit configured to output the common voltage. The switched transient assist circuit stabilizes the amplifier in the presence of large transient output currents but with minimized power dissipation and heat rise in the amplifier.
US09305496B2

It is an object to provide an electric field driving display device capable of displaying a high quality image and to provide an electric field driving display device in which residual images in an outline of a pixel is prevented from occurring. An insulating film is formed over a second electrode and a plurality of first electrodes are provided over the insulating film. Each of the first electrodes is electrically connected to the second electrode. The second electrode is provided to partly overlap a region between the adjacent two first electrodes. In other words, viewing the top and the bottom of the display device, the adjacent first electrodes are provided apart from each other and the second electrode is provided to embed a space between the adjacent first electrodes.
US09305487B2

An OLED display and a method for driving a display panel thereof are provided. The layout area of each pixel of the OLED display panel is specially designed to be a rectangle in shape, and the pixels are driven in such a manner that each two sub-pixels are taken as a unit to be driven. As such, according to the interaction manner among sub-pixels of the pixels, two sub-pixels can be viewed as one pixel to achieve more pixels within 1 inch in comparison with the conventional panels, which enables the current AMOLED driving circuit designs to be used in specific high resolution applications.
US09305485B2

The present invention relates to a driving method of an organic light emitting display which is capable of displaying images at uniform luminance. A driving method of an organic light emitting display of an embodiment according to the present invention includes supplying a data signal to a pixel and, after the data signal is supplied, driving the pixel in a constant-voltage system during a first time period and in a constant-current system during a second time period.
US09305483B2

A display device and a method for driving the same are discussed. The display device includes an image processing unit, a timing controller which receives various signals through a mobile industry processor interface (MIPI) connected to the image processing unit, and a display module displaying an image under the control of the timing controller. The timing controller includes a logic block for controlling the display module, and a self-recovery block which outputs a self-command signal for escaping an abnormal state when the logic block is faced with the abnormal state due to an external environment factor.
US09305476B2

Methods for removing, reducing or treating the trace metal contaminants and the smaller fine sized cerium oxide particles from cerium oxide particles, cerium oxide slurry or chemical mechanical polishing (CMP) compositions for Shallow Trench Isolation (STI) process are applied. The treated chemical mechanical polishing (CMP) compositions, or the CMP polishing compositions prepared by using the treated cerium oxide particles or the treated cerium oxide slurry are used to polish substrate that contains at least a surface comprising silicon dioxide film for STI (Shallow trench isolation) processing and applications. The reduced nano-sized particle related defects have been observed due to the reduced trace metal ion contaminants and reduced very smaller fine cerium oxide particles in the Shallow Trench Isolation (STI) CMP polishing.
US09305474B2

The motorized gift package accessory of the present disclosure and related inventions include a base portion, which can be attached, adhesively or otherwise, to a gift package, such as a gift box. An accessory portion is attached to the base portion and contains one or more mobile elements which can be set in motion by a small or miniature motor. User interaction with the motorized gift package accessory is required to initiate the motor which in turn effects movement of the one or more mobile elements.
US09305471B1

A display system for use by a caregiver team in managing a patient includes a substrate panel arranged to be suspended on a wheelchair with a clock face printed on the front surface with at least one manually movable hand to display a selected time. A first window display on the front surface is manually set a selected time period to visit the patient. A plurality of alternate operations on the patient to reduce pressure issues is printed on the rear and a selected one is indicated to the caregiver by moving a marker so that the caregiver is required by the clock time on the clock face to attend the patient, to carry out the selected action and to reset the clock time by an increment determined by the time period and so that the failure to attend the patient is immediately visible.
US09305470B2

The present invention provides a display device which is provided with a Cu alloy film having high adhesion to an oxygen-containing insulator layer and a low electrical resistivity. The present invention relates to a Cu alloy film for a display device, said film having a stacked structure including a first layer (Y) composed of a Cu alloy containing, in total, 1.2-20 atm % of at least one element selected from among a group composed of Zn, Ni, Ti, Al, Mg, Ca, W, Nb and Mn, and a second layer (X) composed of pure Cu or a Cu alloy having Cu as a main component and an electrical resistivity lower than that of the first layer (Y). A part of or the whole first layer (Y) is directly in contact with an oxygen-containing insulator layer (27), and in the case where the first layer (Y) contains Zn or Ni, the thickness of the first layer (Y) is 10-100 nm, and in the case where the first layer (Y) does not contain Zn and Ni, the thickness of the first layer (Y) is 12-100 nm. The present invention also relates to a display device having the Cu alloy film.
US09305469B2

A subsea antifouling sign and a method for mounting such a sign on a structure to be located subsea. The sign comprises a body of an antifouling material, and a first surface of the body has indicia or markings thereon. An adhesive layer or coating is provided on a second opposing surface, and a protective lining is located on the adhesive layer or coating. The method comprises removing the protective lining from the adhesive layer or coating; and attaching the subsea antifouling sign to the structure by adhering the adhesive layer or coating to a surface of the structure.
US09305464B2

A parking assistance system is provided for a motor vehicle, with a sensor device which is configured to measure a distance of the motor vehicle from an object and an intrinsic speed of the motor vehicle, with a warning device, which is configured to compare the measured distance with a distance threshold value and to output a warning signal if the measured distance drops below the distance threshold value. The warning device is configured to adapt the distance threshold value taking the measured intrinsic speed into account. Furthermore, a method is provided for operating a parking assistance system, a computer program, a computer-readable medium and a motor vehicle.
US09305460B1

A warning light detector and system to alert a motorist of warning lights is provided. The warning light detector includes a camera that takes digital images of a field of view in front of the automobile, and a detection program to detect any warning lights analyzes these digital images. A control system of the detector activates an alert feature, such as a sound and/or light, to alert the motorist of a warning light when one has been detected by the detection program.An alert feature may be a sound emitted from a speaker or light that flashes and the alert feature may be configured on the detector or be transmitted through the automobile's stereo, warning, or navigational system, for example. A detector may be a mobile device, such as a mobile phone and a warning light detector application program may be downloaded to the mobile device.
US09305447B2

A method and system for producing an electromagnetic field that exhibits a strong near field that is sufficient to deactivate an electronic article surveillance, EAS, tag and a weak far field that is insufficient to deactivate the EAS tag are disclosed. According to one embodiment, two half-wavelength dipoles spaced apart by about a half-wavelength are excited by oppositely phased signals.
US09305443B2

A door sensor system comprising door sensor circuit and a sensor support circuit. The door sensor circuit has the anode of a first LED and the anode of a second LED coupled to a supply voltage terminal. The door sensor circuit has one or more reed switches, each with a first terminal coupled to the first LED cathode and a second terminal coupled to a sensor output terminal. The door sensor circuit has a Zener diode with a cathode coupled to the second LED cathode and an anode coupled to the sensor output terminal. The sensor support circuit is configured to generate, based on the voltage at the sensor output terminal, a first signal if the door is open, a second signal if the door is closed, and a third signal if tampering with the door sensor system is detected.
US09305437B1

According to embodiments described in the specification, a method of dispensing media from an ATM is disclosed. The method includes the steps of: at an electronic device including a processor, a memory, and a touch-sensitive display, displaying a first mix of media items for dispensing by the ATM; receiving input from the touch-sensitive display including a first mix adjustment parameter; applying a heuristic based on the received first mix adjustment parameter, and, at the ATM, dispensing a second mix of media items, the second mix responsive to the application of the heuristic.
US09305436B2

In a gaming machine including a symbol region where reels having symbols are arranged in predetermined arrangement. The symbols are displayed in an arranged manner in longitudinal and transverse directions. A reel control unit that independently controls movement and stop of each of the reels, such that the symbols appearing in the symbol region change and a winning determination unit that determines whether the symbols appearing on a valid line set to span the reels form a predetermined winning pattern, when each of the reels is stopped, layers are set in the symbol region, and in the gaming machine, at least one reel is disposed in each layer, a symbol group is provided in at least one specific reel arranged in a specific layer of the layers in such a manner that symbols capable of forming at least portion of the winning pattern are arranged in the symbol group.
US09305431B2

A method of playing a video poker game comprising: inviting a plurality of players to play a video poker game, wherein each participating player plays an individual hand dealt from a separate standard 52 card deck for that participating player; placing a wager to begin play by each participating player, wherein there is at least two participating players; dealing five cards to each participating player face up from the separate standard 52 card deck for that participating player, wherein each participating player may one of: hold, fold, or replace any of the five cards; dealing replacement cards to each participating player from the separate standard 52 card deck for that participating player for each participating player who selects to replace any of the five card dealt to that participating player; determining if any of the participating players has a winning wager by verifying if remaining five cards of each participating player matches a poker hand stated on a pay table; and paying each participating player having a winning wager from the wager placed by each participating player.
US09305424B2

Various embodiments are directed to gaming systems and related methods for managing one or more electronic gaming machines (EGMs). The gaming system includes a network management system capable of establishing one or more groups (or collections) of gaming machines. The groups of gaming machines may be defined according to one or more gaming machine characteristics. The grouping of the gaming machines on the casino floor allows the system to dynamically configure these different groups of gaming machines.
US09305411B2

Methods and systems for a vehicle system that includes intercepting signals associated with a device and isolating identifiers associated with the device. The vehicle registers the device with a vehicle control system.
US09305408B2

A multiple electronic control unit (ECU) diagnosing system and a method thereof for a vehicle by which a diagnosis time for an ECU can be shortened by using an Ethernet protocol and a communication gateway. The multiple ECU diagnosing system for the vehicle applies a multiple ECU diagnosing algorithm of a one-to-n method which is more efficient than a diagnosis algorithm of a one-to-one method between diagnostic equipment. ECUs for the vehicle are connected through various communication networks (K-Line, CAN, LIN, FlexRay, and MOST) by using a communication gateway transferring messages and signals between the ECUs, thus significantly shortening a diagnosis time for the ECUs and acquiring a large amount of diagnosis information at the same time.
US09305404B2

An RFID tag for use in a vehicle for use in an electronic toll collecting system. The tag is capable of transmitting data to a tag interrogator indicating the occupancy status of the vehicle. In an embodiment, the tag has a user input and a visual and audible tag status indicator. The user input is used to change the occupancy status of the tag, wherein the occupancy status is a portion of a message sent by radio frequency to the interrogator when the vehicle passes through a toll area.
US09305395B2

The invention relates to a dental imaging apparatus which includes an x-ray imaging means and at least one color camera for photographing the face of a patient positioned at the imaging station of the apparatus, which at least one color camera is arranged to image the patient's face positioned at the patient support station from different directions, and means arranged into functional connection with said at least one color camera for creating a virtual three-dimensional texture model of the patient's face.
US09305392B2

Techniques are disclosed for tracing a ray within a parallel processing unit. A first thread receives a ray or a ray segment for tracing and identifies a first node within an acceleration structure associated with the ray, where the first node is associated with a volume of space traversed by the ray. The thread identifies the child nodes of the first node, where each child node is associated with a different sub-volume of space, and each sub-volume is associated with a corresponding ray segment. The thread determines that two or more nodes are associated with sub-volumes of space that intersect the ray segment. The thread selects one of these nodes for processing by the first thread and another for processing by a second thread. One advantage of the disclosed technique is that the threads in a thread group perform ray tracing more efficiently in that idle time is reduced.
US09305390B2

A method for mapping a two-dimensional image data onto a three-dimensional graphic model of an object includes taking a plurality of two-dimensional images of the object. Each two-dimensional image has data, such as temperature data, which is desired to be represented on the three-dimensional graphic model. The three-dimensional model of the object is viewed on a graphic user interface. The three-dimensional model has a plurality of facets, each facet being configured for selectively receiving the data from the two-dimensional images, so that the two-dimensional images are mapped onto the facets of the three-dimensional model. The three-dimensional model can then be analyzed.
US09305388B2

A system, method, and computer program product are provided for using a bit-count texture format. A rasterized coverage bit mask is received by a texture processing unit from a bit-count format texture map, the rasterized coverage bit mask is converted to a scalar value, and the scalar value is processed while the rasterized coverage bit mask is retained in the bit-count format texture map. The coverage bit mask may be converted by computing a count of samples that are covered by at least one graphics primitive according to the rasterized coverage bit mask.
US09305384B2

Hybrid image projection systems and methods can superimpose image components of an input image. An input image can be divided into smaller regions and at least one parameter of each region can be determined. The input image can be decomposed based on the parameter of each region into multiple, less correlated, orthogonal or quasi-orthogonal image components. Each projector can display respective image components so that the images projected may be optically superimposed on a screen. The superposition of orthogonal or quasi-orthogonal image components can result in superposition of images in an existing multi-projector image systems being more insensitive to inter-projector image misalignment. Superimposing orthogonal or quasi-orthogonal images can be used to avoid visible image degradation, and provide more robust image quality in a multiple projector system implementation.
US09305380B2

Some embodiments provide a method for conflating geometries to a road in a map region for an electronic mapping service. The method receives a first geometry representing a road. The method receives several geometries arranged such that a gap representing the road is between the geometries. The gap is not aligned with the first geometry representing the road. The method expands the geometries toward the first geometry such that the geometries converge at the first geometry. The road geometry is for drawing over the plurality of other geometries by a client mapping application.
US09305377B2

A PET scanner (20, 22, 24, 26) generates a plurality of time stamped lines of response (LORs). A motion detector (30) detects a motion state, such as motion phase or motion amplitude, of the subject during acquisition of each of the LORs. A sorting module (32) sorts the LORs by motion state and a reconstruction processor (36) reconstructs the LORs into high spatial, low temporal resolution images in the corresponding motion states. A motion estimator module (40) determines a motion transform which transforms the LORs into a common motion state. A reconstruction module (50) reconstructs the motion corrected LORs into a static image or dynamic images, a series of high temporal resolution, high spatial resolution images.
US09305369B2

A method and a system for data compression are provided. The method may include: obtaining scanning data to be compressed; compressing the scanning data using a first compression method and a second compression method to obtain a first compressed data and a second compressed data respectively, where a compression ratio of the first compressed data is lower than a compression ratio of the second compressed data; and determining whether the compression ratio of the first compressed data meets a predetermined compression ratio requirement, if yes, determining the first compressed data as a compression result data corresponding to the scanning data, if no, determining the second compressed data as a compression result data corresponding to the scanning data. Scanning data compressed by the method or the system can meet target compression requirements.
US09305368B2

Techniques related to graphics rendering including techniques for compression and/or decompression of graphics data by use of pixel region bit values are described.
US09305364B2

A motion estimation system is disclosed. The motion estimation system may include one or more memories storing instructions, and one or more processors configured to execute the instructions to receive, from a scanning device, scan data representing at least one object obtained by a scan over at least one of the plurality of sub-scanning regions, and generate, from the scan data, a sub-pointcloud for one of the sub-scanning regions. The sub-pointcloud includes a plurality of surface points of the at least one object in the sub-scanning region. The one or more processors may be further configured to execute the instructions to estimate the motion of the machine relative to the at least one object by comparing the sub-pointcloud with a reference sub-pointcloud.
US09305359B2

According to an aspect of the present invention, an image processing method for extracting a pixel having a specific feature includes: extracting pixels representing an object, to which the pixel having the specific feature belongs, from a given input image based on an image feature other than color; extracting principal colors from the pixels; selecting, from a plurality of pre-trained color distribution models deposited in a repository, a color distribution model closest in distance metric, which indicates distance relative to the extracted principal colors, to the extracted principal colors by performing a search through the repository using the extracted principal colors; and segmenting the input image by categorizing pixels in the input image using the selected color distribution model.
US09305349B2

An apparatus and method for detecting a lesion, which enables to adaptively determine a parameter value of a lesion detection process using a feature value extracted from a received medical image and a parameter prediction model to improve accuracy in lesion detection and lesion diagnosis. The apparatus and the method include a model generator configured to generate a parameter prediction model based on pre-collected medical images, an extractor configured to extract a feature value from a received medical image, and a determiner configured to determine a parameter value of a lesion detection process using the extracted feature value and the parameter prediction model.
US09305343B2

A plurality of images is captured, and the plurality of images is integrated and displayed after one or more ROIs included in the captured images are extracted and classified. At integration, an integration method is controlled according to a classification result of the ROI.
US09305340B2

A reference point determinator determines, as a reference point, the center of each pixel where a sloped line is located. A candidate line generator generates candidate lines each connecting between a point in a pixel having the start point of the sloped line extracted by an endpoint extractor, and a point in a pixel having the end point of the sloped line. A candidate line selector selects a candidate line having the smallest sum total of distances between the candidate line and the reference points from the candidate lines generated by the candidate line generator. A data corrector corrects the sloped line to the candidate line selected by the candidate line selector.
US09305333B1

An apparatus may include a housing, an electronic display region, and a controller. The electronic display region may be coupled to the housing, and may have a rectangular shape with a length and a width, the length being approximately a square root of two (√2) times longer than the width. In response to an indication that the housing and the display region have been rotated from the portrait mode to a landscape mode, the controller may be configured to display a first image and a second image, the first image having an aspect ratio defined by a second length of the first image divided by a second width of the first image, wherein the second length is different from the first length, the second width is different from the first width, the second aspect ratio is substantially equal to the first aspect ratio, and the first image being rotated by ninety degrees (90°) from the first orientation with respect to the axis.
US09305330B2

Systems, methods, and computer-readable storage media for providing images having zoomspots are provided. In embodiments, an interactive image is provided. Such an interactive image includes a zoomspot that, if selected, results in a magnified portion of the interactive image corresponding with the zoomspot. Subsequently, an indication of a selection of the zoomspot is received. In response thereto, the magnified portion of the interactive image corresponding with the zoomspot is automatically presented. The magnified portion can be presented in accordance with a predetermined location of the interactive image and a predetermined quality.
US09305325B2

Methods and apparatus for caching neighbor data in a block processing pipeline that processes blocks in knight's order with quadrow constraints. Stages of the pipeline may maintain two local buffers that contain data from neighbor blocks of a current block. A first buffer contains data from the last C blocks processed at the stage. A second buffer contains data from neighbor blocks on the last row of a previous quadrow. Data for blocks on the bottom row of a quadrow are stored to an external memory at the end of the pipeline. When a block on the top row of a quadrow is input to the pipeline, neighbor data from the bottom row of the previous quadrow is read from the external memory and passed down the pipeline, each stage storing the data in its second buffer and using the neighbor data in the second buffer when processing the block.
US09305322B2

In one embodiment, a method includes deploying an application to a plurality of client system, providing a treatment of the application to a set of client systems by receiving a request from the client system, determining whether the client system belongs in a treat group, remotely activating the treatment, and synchronizing activation of the treatment in response to subsequent requests, and receiving exposure data from the set of client system identifying exposure of the users to the treatment.
US09305311B2

A method may include receiving, from users, information identifying items purchased by the users, the information including a price for each of the items, and storing the information in a database. The method may also include receiving, from a second number of users, additional information identifying items purchased by the second users, the additional information including a price for each of the items, and identifying a first item in the database that matches a second item associated with purchases by one of the second users. The method may further include determining whether the price for the second item is lower than the price for the first item stored in the database and updating the database to include the second price for the first item, in response to determining that the second price is lower than the first price.
US09305310B2

A method for enabling a user to verify a price change for an on-demand service is provided. One or more processors can determine a real-time price for providing the on-demand service to the user. The one or more processors can determine when the real-time price is equal to or exceeds a threshold price. In response to a request from the user for the on-demand service when the real-time price is equal to or exceeds the threshold price, an intermediate interface can be provided that the user is to correctly respond to before a service request can be transmitted to a service system.
US09305306B2

A method delivers information to satisfy current needs of a driver of a vehicle, by first acquiring data related to a current state of the vehicle. The current state and a predictive model are passed to a predictive procedure to determine choice probabilities for nodes in a choice tree (CT). Based on the choice probabilities, information related to the current needs to the driver are selected from a database storing commercial and non-commercial information. Then, the information is delivered to the driver, wherein the delivering is autonomous of the driver.
US09305304B2

Methods and apparatuses to select tracking mechanisms for the performance determination of advertisements. One embodiment includes: selecting one reference type from a plurality of reference types; and determining a reference of the selected type, the reference to be embedded in an advertisement to count communication leads generated from the advertisement. In one embodiment, the advertisement is to be charged according to a performance measure based on communication leads generated from the advertisement. For example, a price for the advertisement can be specified by a party for which the advertisement is to be presented. For example, the advertisement can be charged in response to a voice communication responding to the advertisement. In one embodiment, the plurality of reference types correspond to different mechanisms to track communication leads generated from the advertisement.
US09305300B2

Methods and systems for managing and updating information relating to economic entities using sets of unique identifiers. A universe database contains record entries. Each of the record entries is associated with a unique universe identifier. A customer database contains customer record entries. Each customer record entry is associated with a unique customer identifier. A conversion table provides a mapping between the unique universe identifiers and the unique customer identifiers. The information contained in the customer database is updated using the unique universe identifiers, unique customer identifiers and the conversion table. The unique universe identifiers and the unique customer identifiers are stable over a period of time.
US09305296B1

A method and apparatus for third party control of a device have been disclosed. By utilizing a third party to control a device, view and control of a device may be separated.
US09305294B2

A device and method for waveform transmission of transaction card data to a merchant point-of-sale device are provided. The device includes a memory device for storing data, a processor, and a transmitter. The device is programmed to receive transaction card data that mimics data stored within a magnetic stripe associated with a transaction card, convert the transaction card data to a first data file for storage within the memory device, transmit the first data file to the transmitter, and transmit a first waveform from the transmitter to the POS device, wherein the first waveform includes changes in a magnetic field that represent the transaction card data.
US09305270B2

A system and method of synchronizing recipes and bills of materials (BOM). An approved recipe is parameterized in a planning interface. A BOM is synchronized with the parameterized recipe. The BOM is then displayed in a graphical user interface to allow a user to modify by a resolve conflict present during synchronization.
US09305265B2

A method for probabilistic processing of data, wherein the data is provided in form of a data set S composed of multidimensional n-tuples of the form (x1, . . . , xn), is characterized in that an n-dimensional data structure is generated by way of providing a bit matrix, providing a number K of independent hash functions Hk that are employed in order to address the bits in the matrix, and inserting the n-tuples (x1, . . . , xn) into the bit matrix by computing the hash values Hk(x) for all values x of the n-tuple for each of the number K of independent hash functions Hk, and by setting the resulting bits [Hk(x1), . . . , Hk(xn)] of the matrix. Furthermore, a respective system is disclosed.
US09305252B1

Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications (“RSSI”) of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
US09305249B2

An image forming apparatus which divides image data into predetermined unit blocks and forms an image, the apparatus comprises: a determination unit that determines continuous block lines, that include closed regions having identical components, among a plurality of block lines included in a block; a generation unit that generates data of an intermediate language of each of the blocks using pieces of information of the plurality of block lines and the determination result obtained by the determination unit; a selection unit that selects an image forming method corresponding to the data of the intermediate language of each of the blocks, that is generated by the generation unit; and a forming unit that forms an image of the data of the intermediate language of each of the blocks, in accordance with the image forming method selected by the selection unit.
US09305242B2

A method and an image processing apparatus for image visibility restoration are provided. The method includes the following steps. After an incoming hazy image is received, each of the incoming pixels is classified as either belonging to a localized light region or a non-localized light region. The localized light region is partitioned into patches according to each patch size in associated with image sizes in a training data set. Localized light patches are determined based on a FLD model and a designated patch size is accordingly determined. Adaptive chromatic parameters and dual dark channel priors corresponding to the designated patch size and a small patch size are determined. The incoming hazy image is restored according to the adaptive chromatic parameters, atmospheric light and a transmission map determined based on the dual dark channel priors to produce and output a de-hazed image.
US09305241B2

Systems and methods for reducing a point cloud data set are provided. According to aspects of the present disclosure, a method includes receiving a point of a point cloud data set, the point having three-dimensional coordinates. The point's coordinates are mapped to a location to determine whether a different point's coordinates have already been mapped to the location. The point is discarded when a different point's coordinates have been mapped to the location.
US09305240B2

Image comparison techniques allow a quick method of recognizing and identifying faces or other objects appearing in images. A series of quick distance calculations can be performed between an unknown input image and a reference image. These calculations may include facial detection, normalization, discrete cosine transform calculations, and threshold comparisons to determine whether an image is recognized. In the case of identification uncertainty, slower but more precise motion aligned distance calculations are initiated. Motion aligned distance calculations involve generating a set of downscaled images, determining motion field and motion field-based distances between an unknown input image and reference image, best scale factors for aligning an unknown input image with reference images, and calculating affine transformation matrices to modify and align an unknown input image with reference images.
US09305239B2

A method for recognizing small-font sized text including receiving digital media of a natural scene, the digital media having at least one frame that includes the small-font sized text; generating input maps having values that reflect local properties of corresponding regions in the at least one frame; and detecting regions of the at least one frame that contain the small-font sized text by integrating information from the input maps. The integrated information may include information located between border lines having active pixels therebetween and gaps having a high ratio of non-ink pixels located below a bottom border line and above a top border line in relation to a dominant direction of the text. The active pixels may be pixels having dense changes in character stroke directions.
US09305228B1

Methods, systems, and computer-readable media for processing damaged items using image data lift are presented. In some embodiments, a computing platform may receive image data of a deposit item. Subsequently, the computing platform may determine whether a magnetic ink character recognition (MICR) line of the deposit item is readable. If the MICR line is not readable, the computing platform may perform an image data lift on the image data to extract information from one or more visible fields of the deposit item. Then, the computing platform may identify a payor of the deposit item based on the extracted information and may determine whether the deposit item is an on-us item. If the deposit item is an on-us item, the computing platform may rebuild MICR information for the deposit item. Thereafter, the computing platform may process the deposit item for deposit based on the rebuilt MICR information.
US09305224B1

A method for instant recognition of traffic lights countdown image that can quickly scan and confirm the circular feature image of a traffic light, and retrieve the countdown image thereof by calculating the displacement ratio from the circular image, then enhance, cut and converse the countdown image to display a feature image thereof, and proceed similarity comparison with collected data to calculate the percentage of similarity. The method eventually brings out a result from the image comparisons, so as to fulfill the effectiveness of searching and instantly recognizing the countdown image of a traffic light.
US09305223B1

An autonomous vehicle is configured to detect an active turn signal indicator on another vehicle. An image-capture device of the autonomous vehicle captures an image of a field of view of the autonomous vehicle. The autonomous vehicle captures the image with a short exposure to emphasize objects having brightness above a threshold. Additionally, a bounding area for a second vehicle located within the image is determined. The autonomous vehicle identifies a group of pixels within the bounding area based on a first color of the group of pixels. The autonomous vehicle also calculates an oscillation of an intensity of the group of pixels. Based on the oscillation of the intensity, the autonomous vehicle determines a likelihood that the second vehicle has a first active turn signal. Additionally, the autonomous vehicle is controlled based at least on the likelihood that the second vehicle has a first active turn signal.
US09305218B2

An apparatus for automatically identifying a surgical instrument, the apparatus comprising a capture module, an attribute database, a comparison module, and an exporting module, the capture module comprising hardware operable to capture multiple attributes of the surgical instrument, the attribute database comprising multiple stored attributes of a plurality of reference surgical instruments, the comparison module programmed to generate a comparison score for the surgical instrument, wherein the comparison module is programmed to generate the comparison score by receiving multiple attributes captured by the capture module and comparing it to the multiple attributes stored in the attribute database, and the exporting module configured to receive and export the comparison score generated by the comparison module.
US09305216B1

Actions or activities occurring within an environment may be detected, recognized and classified based on the presence or absence of objects within the environment, which may be recognized within imaging data. The states or changes in states of the objects may be tracked within the imaging data and associated with one or more actions or activities with various probabilities. By tracking the motion of objects, rather than the motion of humans or other actors, the detection and classification of actions or activities may be performed more quickly and efficiently, and may be used to determine the timing associated with one or more steps of such activities, as well as whether each of the steps of an activity has been satisfactorily performed and in an appropriate order.
Patent Agency Ranking