US11228702B1

Placement of a face depicted within a video may be determined. One or more stabilization options for the video may be obtained. Stabilization option(s) may include angle stabilization option, a position stabilization option, and/or a size stabilization option. The video may be stabilized based on the placement of the face and the stabilization option(s).
US11228696B2

To reduce power consumption in an image pickup apparatus that captures a plurality of pieces of image data. An image pickup apparatus includes a signal processing unit and a control unit. The signal processing unit executes, in accordance with a predetermined control signal, either compound-eye processing for synthesizing a plurality of pieces of image data by carrying out signal processing on each of the plurality of pieces of image data or monocular processing for carrying out the signal processing on any one of the plurality of pieces of image data. The control unit supplies the predetermined control signal to the signal processing unit and causes one of the compound-eye processing and the monocular processing to be switched to the other one of the compound-eye processing and the monocular processing, on a basis of a result of a comparison between a measured predetermined physical amount and a predetermined threshold value.
US11228692B2

An information processing apparatus includes a reception unit that receives a transmission request for image data from an image processing apparatus to which a user provides an instruction to execute image processing, an acquisition unit that acquires a security policy corresponding to attribute information related to an attribute of the image processing apparatus in a case where the reception unit receives the transmission request, and a control unit that performs control for transmitting the image data to the image processing apparatus and executing the image processing in the image processing apparatus in accordance with the security policy acquired by the acquisition unit.
US11228688B2

An information processing system includes: an image display section that includes a screen on which an image is displayed; a reception image display unit that is able to display plural reception images for respectively receiving an instruction for execution of a predetermined process on the screen; and a process execution unit that executes, in a case where an operation with respect to a first reception image among the plural reception images is received from a user, the process with respect to a second reception image that is associated with the first reception image among the plural reception images and is not displayed on the screen on which the first reception image is displayed.
US11228687B2

Coordinated colors are used to make it easy for a user to grasp with which text block within a preview pane a setting item within a property pane is associated. By using a color allocated to a setting item displayed in the property pane, at least a part of a display field corresponding to the setting item is colored. Then, in a case where a user selects one of text blocks in a scanned image preview-displayed in the preview pane in the state where one of setting items is selected in the property pane, the text block is colored by using a color allocated to the setting item in the selected state.
US11228684B2

A system is provided enabling creation of a portal to telecommunications services managed by an enterprise user on behalf of accountholders of the enterprise. The system includes a first layer providing access to at least a business support system, an operational support system, a provisioning system, a home location register, and a billing system. The system also includes a second layer providing access to a wizard interface programmed for: creating a portal by the enterprise user with an application enabled to selectively access and/or modify data and settings accessible through a security layer from the first layer; and publishing the portal. The system also includes a third layer providing access to the portal by an accountholder of the enterprise after publishing. The application is: a glanceable application showing the data or settings in a summary visual fashion; or a full application showing the data or settings in a detailed fashion.
US11228682B2

A method for incorporating an augmented voice communication into a communication routing configuration of a contact center system according to an embodiment includes selecting a vocal avatar, wherein the vocal avatar includes phonetic characteristics having first values, receiving a text communication and input user parameters from an input user, generating the augmented voice communication based on the text communication and the input user parameters, wherein the augmented voice communication includes phonetic characteristics having second values, wherein the first values of the phonetic characteristics of the vocal avatar are different from the second values of the phonetic characteristics of the augmented voice communication, and incorporating the augmented voice communication into the communication routing configuration of the contact center system.
US11228676B1

A system and method for providing telephone event data are described. The system comprises a communications module; a processor coupled to the communications module; and a memory coupled to the processor, the memory storing processor-executable instructions which, when executed by the processor, configure the processor to receive, via the communications module and from a telco server, telephone event data; translate at least a portion of the telephone event data into a format compliant with a particular application executing on a computing device; and send, via the communications module and to the computing device executing the particular application, the translated portion of the telephone event data.
US11228668B2

A first filter specifying handling of one or more network packets received via a network is identified. A first set of access bounds to be used by a network interface card (NIC) to synchronize the one or more network packets received via the network is determined in view of the first filter. The first set of access bounds are provided to a driver of the NIC.
US11228655B2

Facilitating separation of intended and non-intended browsing traffic in browsing history advanced networks (e.g., 4G, 5G, and beyond) is provided herein. Operations of a system can comprise determining respective contradiction values for second-level domains of a group of second-level domains in observed browsing history traffic. The operations can also comprise separating intended network traffic from non-intended network traffic based on the respective contradiction values. The respective contradiction values can indicate levels of inconsistency between the observed browsing history traffic and a determined popularity ranking.
US11228651B2

Techniques for network validation are provided. A first request is received at a first manager component, from a first client. The first client and the first manager component are on a first node of a plurality of nodes, and the first request specifies a desired network service. A first network service endpoint that is capable of providing the desired network service is identified, where the first network service endpoint is on a second node of the plurality of nodes. A connection is established between a first validation agent on the first node and a second validation agent on the second node. Finally, upon determining that the connection between the first and second validation agents satisfies predefined criteria, a connection is established between the first client and the first network service endpoint.
US11228634B2

A management system, a remote device management system, and a display control method. The management system acquires positioning information indicating a location of a mediating apparatus, stores the acquired positioning information in association with device identification information for identifying a device communicable with the mediating apparatus corresponding to the positioning information, receives device status information indicating status of the device from the mediating apparatus, and displays on a display, a first management image including map information depicting an area including the location corresponding to the positioning information and a device identification image indicating the device status information related to the device corresponding to the device identification information associated with the positioning information at a location indicated by the stored positioning information corresponding to the map information.
US11228626B1

The disclosed computer-implemented method may include receiving, at a server, a request from a client for live data. The method may include establishing, at the server, a data transfer promise that is embedded in a live data stream. The live data stream may include the requested live data. The method may further include transferring the live data stream with the embedded data transfer promise to the client, receiving an indication that the status of the embedded data transfer promise was changed during transmission of the live data stream and providing, to the client, an indication of the current status of the live stream based on the received status indication. Various other methods, systems, and computer-readable media are also disclosed.
US11228625B1

Managing a video conference includes connecting participants of the videoconference to at least one video conferencing server that sends and receives video streams between the participants, detecting non-verbal cues of the participants, using the non-verbal cues to track reactions of the participants to segments of a presentation provided by a speaker and to interactions among participants, determining a health index of the video conference based on the reactions of the participants, and providing to at least a subset of the participants recommendations based on the health index for modifying the video conference. The non-verbal cues may include facial expressions, body language, gestures, postures, and/or eye contact. The interactions among participants may include discussions, agreement, disagreement, interruption, and/or eye-rolling. The recommendations may include asking a participant to provide an opinion on a subject matter being discussed in the video conference. The participant may be an expert.
US11228609B1

Methods, non-transitory computer readable media, network traffic manager apparatuses, and systems that assist with managing hypertext transfer protocol (HTTP) requests using extended SYN cookie includes establishing a network connection with a client without allocating a plurality of computing resources to the established network connection, in response to aa request to establish a connection from a client. Presence of a digital signature in a first data packet comprising a request for a webpage is determined. The digital signature is compared to a plurality of stored signatures to determine when the client is a nefarious computing device when the determination indicates that the received request includes the signature. The established network connection is terminated with the client without allocating the plurality of computing resources when the comparison indicates the client is the nefarious computing device.
US11228605B2

A device and method for handling an anomaly in a communication network of a motor vehicle includes at least one detector analyzing a data stream in the communication network, recognizing at least one anomaly using a rule-based anomaly recognition method if at least one parameter for a data packet of the data stream deviates from a target value, and sending information about the at least one recognized anomaly via the communication network.
US11228604B2

In one aspect, a computer-implemented method of detecting network security threats comprises the following steps: receiving at an analysis engine events relating to a monitored network; analysing the received events to identify at least one event that meets a case creation condition and, in response, creating a case in an experience database, the case being populated with data of the identified at least one event; assigning a threat score to the created case based on the event data; matching at least one further event to the created case and populating the case with data of the at least one further event, the threat score assigned to that case being updated in response; and in response to the threat score for one of the cases meeting a significance condition, rendering that case accessible via a case interface.
US11228602B2

An in-vehicle network system includes one first node and a plurality of second nodes. The first node is configured to transmit predetermined data to the respective second nodes, and transmit verification data for verifying whether the predetermined data has been normally received by the second nodes to the second nodes when the predetermined data has been transmitted to the second node. Each of the second nodes is configured to receive the predetermined data transmitted from the first node, receive the verification data transmitted from the first node, verify whether the received predetermined data has been normally received based on the received predetermined data and the received verification data, and transmit a verification result to the first node.
US11228600B2

The car sharing system includes a car share device and an encryption code updating unit. The car share device is configured to perform wireless communicate with a mobile terminal that is operable as a vehicle key. The encryption code updating unit updates a first encryption code, which was used during a previous connection of the mobile terminal and the car share device, to a second encryption code, which differs from the first encryption code, when the mobile terminal and the car share device are reconnected.
US11228596B2

Implementations of this specification include receiving a synchronization request from a light-weight node of the blockchain network including an identity of the light-weight node; identifying one or more permissions associated with the identity of the light-weight node; determining an original world state structure associated with the block height and including a plurality of account records; identifying based on the one or more permissions, a subset of the plurality of account records that are authorized for access by the light-weight node; generating an isolated world state structure based on the original world state data structure including only the subset of the plurality of account records that are authorized for access by the light-weight node; sending a response to the light-weight node that includes the isolated world state data structure.
US11228590B2

A data processing method is performed at a computer system managing application programming interfaces (APIs) and mobile application entrances. An API invocation request initiated by an application system is received by the computer system, permission information corresponding to the application system is obtained according to an identifier of the mobile application entrance and an application system identifier that are carried in the API invocation request, then authentication is performed on the API invocation request according to the permission information and first authentication information carried in the API invocation request, and the application system is allowed to invoke an API for data processing when the authentication succeeds, so that internal data corruption caused due to that each application system at a mobile application entrance randomly invoke the API is avoided, thereby implementing uniform management on the internal data, greatly strengthening data security, and facilitating API interface expansion.
US11228582B2

A system and method of enabling software features on medical devices uses a local server disposed at a medical facility and a license server remote from the local server. The method includes generating a software enabling indicator at the license server, the software enabling indicator comprising a numerical code representing a number of licenses to be allocated for a software feature. The method includes providing a digitally signed electronic document based on the software enabling indicator, transmitting the electronic document from the license server to the local server, and authenticating the license server at the local server using the electronic document. The method includes generating at the local server a plurality of second digital certificates based on the software enabling code, transmitting the second digital certificates to each of the medical devices, and enabling a software feature on the medical devices based on the second digital certificates.
US11228579B2

Systems and methods for passing account authentication information via parameters. A server can provide, to a client device, an account parameter derived from an account credential used to authenticate a first application to insert into a link. The link can include an address referencing a second application. The account parameter can be passed from the first application to the second application responsive to an interaction on the link. The server can receive from the second application of the client device, subsequent to passing the account parameter from the first application to the second application, a request to authenticate the second application including the account parameter. The server can authenticate the client device for the second application using the account parameter. The server can transmit, responsive to authenticating the client device for the second application, an authentication indication to the second application of the client device.
US11228577B2

Embodiments are directed to a method of enabling cloud applications to act on behalf of a user, including: providing, by the processor, a plugin integrated with a web browser; configuring, by the processor, a plurality of cloud applications and one or more identity providers in the plugin; wherein the plurality of configured cloud applications are associated with the one or more identity providers; authenticating, by the processor, a user identity through one of the plurality of configured cloud applications; generating, by the one or more identity providers, an identity token responsive to authentication; providing, by the one or more identity providers, each of the plurality of configured cloud applications with the identity token; and acting, by any of the plurality of configured cloud applications, on behalf of the user with the identity token.
US11228575B2

Concepts for defining authority for triggering an expression within an enterprise workspace from an external service outside the enterprise workspace are presented. Such concepts define a rolling key function configured to generate a rolling key. A secret is defined as a starting point for the rolling key function. The secret and the rolling key function are securely shared with the external service.
US11228572B2

Data transmission system and method with high security are introduced for communicative connection of a transmitter device to a receiver device through a data transmission channel. The transmitter device includes multiple asymmetric encoding packers, and the receiver device includes a multiplex-decoding processor corresponding to the asymmetric encoding packers. After the transmitter device performs pre-processing on original data according to a source of the original data, the asymmetric encoding packers perform encoding packing on the pre-processed original data and generate multiple encoded data. The encoded data are sent to the receiver device through the data transmission channel, and are decoded by the multiplex-decoding processor to obtain restored data. Accordingly, enhancing security and convenience of data transmission are achieved.
US11228570B2

A distributed exchange protocol method based on a safe transfer of envelopes among a distributed nodal network using a local ranking moderator comprising the steps of: authoring an envelope at one node, said envelope comprising at least a letter and a trigger, wherein said letter is any one of an execution algorithm and said trigger is any one of an event or algorithm that starts the execution of a logic; collecting information about at least one of an envelope or node (e/n) interacting with or interacted with another e/n by a ranking moderator and based on said collected information generate a ranking or listing of at least one of honest, dishonest, or unknown nodes and sharing this listing or ranking by at least one node to decide which nodes are eligible for envelopes to be transferred to or from; launching said envelope into the distributed network of nodes, whereby the envelope is transferred from at least the one node to at least another node that is moderator-approved and checking the trigger from at least one envelope at least once by at least the moderator-approved node and transferred further to another moderator-approved node if the trigger is not met and disabling trigger checking functionality of any one of nodes not actively checking for triggers to save resources; and analyzing the envelopes content upon trigger being fired to learn which node is eligible to execute the main logic of the envelope.
US11228567B2

An automated system comprising a processor and a database are described. The processor executes communication software reading: at least one image corresponding to an identifier of a blood product from a donor; and at least one database storing at least one communication from a receiver of the blood product. The communication software executed by the processor determines an intermediary from the identifier and contacts the intermediary to obtain contact information of the donor.
US11228566B1

A method and system for anonymizing data to be transmitted to a destination computing device is disclosed. Anonymization strategy for data anonymization is provided. Data to be transmitted is received from a user computer. Selective anonymization of the data is performed, based on the anonymization strategy, using an anonymization module. The data includes a plurality of characters. An order indicator data indicative of the order of the received data is generated. The received data is anonymized to derive an anonymized data. The anonymized data and the order indicator data is transmitted to the destination computer over a network. In one embodiment, a portion of the anonymized data is selected as a search ID. A cross reference between a search key indicative of a portion of the received data and the corresponding search ID is stored.
US11228561B2

A method includes, with a hypervisor, receiving a list of device addresses, wherein the list includes at least one approved address, sending a notification to a guest that device address selection is allowed, receiving a first programming request from the guest, wherein the first programming request includes a requested device address, determining that the requested device address matches one of the at least one device address, and in response to the determining, assigning the requested device address to a virtual network device associated with the guest.
US11228560B2

Embodiments provide an access point (AP) that includes a set of one or more base-station functions configured to connect a user equipment (UE) to the AP over a wireless communication interface; and a set of one or more core-network functions configured to provide services to the UE. The AP allocates an Internet Protocol (IP) address to the UE by using at least one Dynamic Host Configuration Protocol (DHCP) server that is external to the AP.
US11228552B1

A mail transfer agent configured to route and deliver electronic mail is executed within a virtualization container of a container deployment unit, wherein the mail transfer agent is configured to access a provisioned storage volume resource of a data storage. It is automatically detected that the mail transfer agent is not operational, including by detecting that the provisioned storage volume resource is no longer mounted by the container deployment unit, wherein the mail transfer agent has stored in the provisioned storage volume resource one or more messages remaining to be processed.
US11228541B1

Embodiments include a computer implemented method for automatically identifying an issue from a help message received via a chat interface and generating a response for responding to the help message. The method can include receiving one or more response templates that each include a reference to a resource associated with a help topic. The method can also include receiving, from a second user, a help request via the chat interface of a help channel. In response to receiving the help request the method can include parsing the help request to identify a help topic, generating a help desk ticket associated with the help request and generating a response message that includes an information resource associated with the help topic, and sending the response message to the user. In response to the user viewing the information resource and selecting a user interface element, the method can include automatically closing the help desk ticket.
US11228537B2

A priority-based resource processing method and system, belonging to the technical field of information processing, are described. The priority-based resource processing method comprises: calculating a first priority of a first resource and a second priority of a second resource; determining whether the first priority of the first resource is higher than the second priority of the second resource; and when it is determined that the first priority is higher than the second priority, responding to a first operation request corresponding to the first resource.
US11228534B2

This application provides a congestion control method, a network device, and a network interface controller. In the congestion control method performed by a first intermediate device, the first intermediate device receives a first data packet sent by a sending device, sends the first data packet to a receiving device along a first path, receives a first acknowledgment packet that is sent by the receiving device and that is used for acknowledging the first data packet, and determines a congestion degree of the first path based on a congestion mark in the first acknowledgment packet. The first intermediate device changes a window value and sends the changed first acknowledgment packet to the sending device. According to a solution provided in this application, a speed of transmitting a data packet is adjusted based on a congestion degree of a communication path and a quantity of bytes of the data packet.
US11228519B1

Techniques for using traceroute with tunnels and cloud-based systems for determining measures of network performance are presented. Systems and methods include receiving a request from a client to perform a reverse trace; requesting a trace to an endpoint that is one of an egress router and a tunnel client, wherein there is a tunnel between i) the destination and ii) the one of the egress router and the tunnel client; receiving a response to the trace; and sending details associated with the response to the client so that the client aggregates these details with details from one or more additional legs to provide an overall view of a service path between the client and the destination.
US11228517B2

Disclosed are various embodiments for identifying devices that are part of a network. Devices are modeled based on physical characteristics. Devices are classified or device communications can be verified.
US11228513B2

One example packet processing device includes a buffer, and the packet processing device obtains a to-be-measured packet. In response to determining that occupied storage space in the buffer is less than a preset threshold, the packet processing device reads the to-be-measured information from the buffer, and modifies, based on the to-be-measured information and a first algorithm, a pieces of data in first measurement data corresponding to the to-be-measured packet, where a is a positive integer. In response to determining that occupied storage space in the buffer is greater than or equal to a preset threshold, the packet processing device modifies, based on to-be-measured information and a second algorithm, w pieces of data in second measurement data corresponding to the to-be-measured packet, where w is a positive integer, and w is less than a.
US11228503B2

Systems, methods, apparatuses, and computer program products for the generation and adaptation of network baselines are provided. One method may include generating predicted values for one or more network metrics over a future time period, generating a baseline for the network metric(s) using the predicted values and/or historic data, evaluating the network metric(s) to detect changes in network conditions using at least one time series analysis technique, and adapting the baseline to the detected changes in network conditions using historic data, machine learning and/or a time series analysis technique.
US11228502B2

The present disclosure relates to aggregation platforms and requirement owners. One example aggregation platform is configured to receive a request from a requirement owner, where the received request comprises a request for an aggregation platform data model (APDM); determine an APDM based on the received request, where the determined APDM comprises at least one relationship between at least one model and at least one associated model repository, transmit the determined APDM to the requirement owner, receive an aggregation requirement (AR) from the requirement owner, where the received AR comprises at least one model identifier and at least one associated model repository identifier, and generate a deployment template (DP) based on the received AR.
US11228500B2

Systems, methods, and computer-readable media for designing network performance and configuration include determining one or more use cases for a network to be provisioned, based on at least one or more business verticals related to a customer of the network. A data plane scale is determined from the use cases and an initial data plane scale generated using a linear regression on one or more data plane parameters. The data plane parameters include a platform type, feature set, packet size, or software version of the network. A control plane scale is determined from the use cases and an initial control plane scale generated using a linear regression on one or more control plane parameters of the network. The control plane parameters include a platform type, feature set, or software version of the network. The network is provisioned for the data plane scale and the control plane scale.
US11228498B2

At each delegate device and each non-delegate device of a logical device hierarchy, a data cube is generated. The logical device hierarchy includes more than one level, and each level includes one or more groups, and each group includes one delegate device and one or more non-delegate devices. At each delegate device, data cubes are received from the one or more non-delegate devices associated with the same group. At each delegate device, data cubes are received from delegate devices of a different group, and that delegate device is the parent of the delegate devices associated with a different group. At each delegate device, the received data cubes are aggregated into a weighted data cube. From each delegate device, the weighted data cube are outputted to the parent of the delegate device.
US11228497B2

In one implementation, a method for topology based management with stage and version policies can include associating a topology of an application under development, determining a number of policies, wherein the number of policies include stage and version policies that define a number of available infrastructures for a given stage and version of the application, associating the number of policies to a number of nodes of the topology, and provisioning the topology with the associated number of policies.
US11228495B2

A system may include a first node in a high-availability cluster; a second node in the high-availability cluster; a redundant interface between a network device and both the first node and the second node, wherein the redundant interface is associated with a redundancy group that designates one of the first node or the second node as a primary node in the high-availability cluster and that designates the other of the first node or the second node as a backup node in the high-availability cluster; a wireless interface of the first node, wherein the wireless interface is included in the redundant interface; and a wired interface of the second node, wherein the wired interface is included in the redundant interface.
US11228483B2

Disclosed herein are systems, methods, computer media, and apparatuses for providing resource tracking, such as in a data center environment. A control and monitoring node receives updates indicating instantiation of resources in the computing system network. The control and monitoring node determines that there are duplicate resources in the network, and then determines which of the duplicate resources to provide connectivity to. The control and monitoring node provides network configuration updates to various networking resources in the network to provide network connectivity to the one of the duplicate resources in the network.
US11228478B1

A wireless transceiver system includes a transmitter and a receiver. The transmitter includes a digital processor and a self-correction modulator coupled to the digital processor, wherein based upon a calibration correction assessment of an in-phase (I) signal and a quadrature (Q) signal received from the digital processor, the self-correction modulator generates a calibrated modulated signal. The self-correction modulator includes a core modulator and a calibration correction unit. The calibration correction unit is configured to correct an output of the core modulator based upon the calibration correction assessment. The calibration correction unit includes a calibration processing unit and a calibration modulator, wherein the calibration processing unit provides correction quantities that are used to program the calibration modulator to provide the self-corrected modulated signal.
US11228470B2

A continuous time linear equalization (CTLE) circuit is disclosed. The CTLE circuit includes a passive CTLE circuit and an active CTLE circuit. The active CTLE circuit includes a differential transistor pair and the output of the passive CTLE is configured to drive gates or bases of the differential transistor pair.
US11228467B1

Disclosed is a device that multiplies a first signal outputted from a CTLE and a second signal obtained by delaying the first signal by a predetermined time interval; produces a specific signal reflecting a temporal sum of the multiplied signal; determines gain control signal in a manner such that the difference between the specific signal and a predetermined target level is reduced; and provides the determined gain control signal to the CTLE so as to be applied to high-band boosting thereof. The time interval to be delayed corresponds to N (N is an integer equal to or greater than one) times a unit interval that is occupied by one symbol in the first signal.
US11228465B1

A method of operation for an Ethernet transceiver is disclosed. The method includes entering a training sequence. The training sequence includes transferring uncoded two-level symbols to a link partner; exchanging updated precoder coefficients with the link partner; and directly following exchanging updated precoder coefficients, transferring multi-level symbols to the link partner. The multi-level symbols being encoded consistent with the exchanged updated precoder coefficients and having greater than two symbol levels.
US11228463B2

An embodiment of the present invention provides a sounding reference signal (SRS) transmission method, a base station, and a user equipment, the SRS transmission method including: generating SRS configuration information for at least two UEs, such that an SRS of a first type of UE of the at least two UEs is non-orthogonal with an SRS of a second type of UE of the at least two UEs; transmitting the SRS configuration information of the at least two UEs.
US11228458B2

Operating a data distribution including a data distribution module and a plurality of host-bus adapters coupled to the data distribution module can include defining a coherent group that includes a set of members that includes the plurality of host-bus adapters; providing a group-coherent memory area in each of the set of members; and initiating a one-to-all broadcast message from a one of the plurality of host-bus adapters to all of the set of members when the one of the plurality of host-bus adapters requests a write to its local group-coherent memory area. The group-coherent memory area in each of the set of members is physically mirrored with a temporal coherence and no semaphores or access enables are required to achieve the temporal coherence of the coherent group.
US11228455B2

The invention regards the forwarding of multicast messages in a network system. A network router according to the present invention comprises a memory in which configuration data is stored. The configuration data define at least one route along which a multicast message is to be forwarded. If the forwarding of a multicast message is allowed in principle by such specified route, it is additionally checked if from the downlink side of the network router, multicast listener information was received. Only if both conditions are fulfilled, the multicast message will be forwarded along the specified route.
US11228447B2

Embodiments of the invention provide enhanced security solutions which are enforced through the use of cryptographic techniques. It is suited for, but not limited to, use with blockchain technologies such as the Bitcoin blockchain. Methods and devices for generating an elliptic curve digital signature algorithm signature (r, w) are described. In one embodiment, a method includes: i) forming, by a node, a signing group with other nodes; ii) obtaining, by the node, based on a secure random number: a) a multiplicative inverse of the secure random number; and b) the first signature component, r, wherein the first signature component is determined based on the secure random number and an elliptic curve generator point; iii) determining, by the node, a partial signature based on a private secret share, the multiplicative inverse of the secure random number and the first signature component; iv) receiving, by the node, partial signatures from other nodes of the signing group; and v) generating, by the node, the second signature component, w, based on determined and received partial signatures.
US11228431B2

A communication system includes a first quantum key distribution device and an intermediary device. The first quantum key distribution device is configured to be coupled to a second quantum key distribution device over a quantum channel and to generate a shared key with the second quantum key distribution device based on a quantum state transmitted along the quantum channel. The intermediary device is disposed along a communication pathway within a network between a sender device and a receiver device. The intermediary device is communicatively connected to the first quantum key distribution device and configured to utilize the shared key to authenticate one or more data packets communicated from the sender device along the communication pathway by examining the one or more data packets for a presence of an information pattern that is associated with the shared key.
US11228429B2

A communication device for communication with a network device during EAP-AKA′. The communication device is operative to receive a first Perfect Forward Secrecy, PFS, parameter value and at least one attribute value indicating a choice of a Diffie-Hellman group from the network device. The communication device is also operative to receive a cipher key, CK, and an integrity key, IK. Generate a modified cipher key, CK′, and a modified integrity key, IK′ based on CK, IK and an access network identity. Operations include calculating a second PFS parameter value. Send the second PFS parameter value to the network device. Calculate a third PFS parameter value. Derive, using a Pseudo-random function, a key based on the third PFS parameter value, CK′, IK′ and an identity associated with the communication device. A network device, methods, further communication devices, a server, computer programs and a computer program product are also disclosed.
US11228426B2

A communication device includes: a counter, a pseudo-random number generator, a symbol generator, a modulator, and a controller. The counter counts symbols transmitted to a correspondent device. The pseudo-random number generator generates a pseudo-random number corresponding to a count value of the counter. The symbol generator generates a transmission symbol from a transmission signal and the pseudo-random number. The modulator generates a modulated signal from the transmission symbol. When a disruption of a communication with the correspondent device is detected, the controller selects, from among a plurality of restoring times determined in advance, a restoring time for resuming the communication, and gives the counter a count value assigned in advance to the selected restoring time. The counter resumes a counting operation from the count value given from the controller when the communication device resumes a communication with the correspondent device.
US11228425B2

A data storage method comprises receiving, from a first blockchain node associated with a blockchain, a query for encrypted data stored in the blockchain, wherein the encrypted data is shared by a second blockchain node; determining, through one or more smart contracts, whether the first blockchain node has a permission to decrypt the encrypted data; if the first blockchain node has the permission: sending the encrypted data to an encryption device to decrypt the encrypted data and return data obtained from the decryption to the first blockchain node; determining, through the smart contracts, a reward value to be added to an account of the second blockchain node; and sending a node identifier of the second blockchain node and the reward value to blockchain nodes of the blockchain, enabling each of the blockchain nodes to store the node identifier and the reward value in the blockchain.
US11228423B2

A method includes: a first device sending to a second device a deployment request for deploying a homomorphically-encrypted data model on the second device, wherein the deployment request comprises ciphertext model parameters and a public key for the homomorphic encryption; the second device obtaining a first ciphertext security assessment index through computation using the ciphertext model parameters, and sending the same to the first device; the first device decrypting the received first ciphertext security assessment index using a private key corresponding to the public key to generate a plaintext security assessment index, and forwarding the plaintext security assessment index to the second device; and the second device encrypting the plaintext security assessment index using the public key to generate a second ciphertext security assessment index, comparing both indices to determine consistency for determining whether to deploy the homomorphically-encrypted data model.
US11228417B2

Various embodiments provide a data sampling circuit comprising a first sampling module configured to respond to a signal from the data signal terminal and a signal from the reference signal terminal and to act on the first node and the second node; a second sampling module configured to respond to the signal from the first node and the signal from the second node and to act on the third node and the fourth node; a latch module configured to input a high level to the first output terminal and input a low level to the second output terminal; and an offset compensation module connected in parallel to the second sampling module and configured to compensate an offset voltage of the second sampling module.
US11228415B2

A method for wireless communications, comprising: signaling, to a user equipment (UE), an indication of one of at least two rules regarding how quasi co-location (QCL) configured for the UE should be applied for one or more DMRS ports; and sending downlink transmission to the UE with the one or more DMRS ports; receiving signaling from a base station and processing signals received on one or more DMRS ports based on the indicated rule. Said method improves communications between access points and stations in a wireless network.
US11228403B2

A method for estimating jitter of a clock signal includes generating a phase-adjusted clock signal based on an input clock signal and a feedback clock signal using a frequency-divided clock signal. The method generating N digital time codes for each phase adjustment of P phase adjustments of the phase-adjusted clock signal using a reference clock signal. Each digital time code of the N digital time codes corresponds to a first edge of a clock signal based on the frequency-divided clock signal. P is a first integer greater than zero and N is a second integer greater than zero. The method includes generating a jitter indicator based on an expected period of the clock signal and the N digital time codes for each phase adjustment of the P phase adjustments.
US11228402B2

A method is described and in one embodiment includes receiving at a first node in a communications network a Session Traversal Utilities for Network Address Translation (“STUN”) message associated with a first flow, wherein the STUN message comprises a flow attribute including corresponding to the first flow; analyzing the flow attribute at the first node; setting policy corresponding to the first flow in the network based on the analyzing, wherein setting the policy includes using the flow attribute of the STUN message to configure a network path for the first flow in the communications network; and forwarding the STUN message to a next network node.
US11228400B2

A communications device including a receiver configured to receive signals from an infrastructure equipment of a wireless communications network in accordance with a wireless access interface provided by the infrastructure equipment, and a controller configured to control the receiver to receive data from the infrastructure equipment via a downlink of the wireless access interface. The controller is configured in combination with the receiver to receive a message from the infrastructure equipment which has been transmitted with a number of repetitions in a search space formed in the wireless access interface. The search space extends in time sufficient to span a transmission of the message at a highest repetition level associated with the highest number of repetitions and transmitted on radio resources selected by the infrastructure equipment from a plurality of candidates for radio resources which define the search space.
US11228390B2

Provided in an embodiment of the invention are a method for transmitting data, a receiving-end device, and a transmitting-end device. The method comprises: a receiving-end device receiving, on a time unit, a first part and at least one second part of data, wherein first modulation and coding processing is performed on the first part, and second modulation and coding processing is performed on the at least one second part; and the receiving-end device performing demodulation on the first part and the at least one second part. The method for transmitting data, the receiving-end device, and the transmitting-end device provided in the embodiment of the invention achieve a higher frequency spectrum efficiency, thereby realizing fast demodulation.
US11228383B2

A system configured to perform a method for estimating external noise in a communication channel between a transmitter and a receiver is described. The method comprises obtaining a measurement of effective noise on decoded symbols at the receiver, the decoded symbols comprising noisy versions of symbols conveyed by a communication signal transmitted over the communication channel. The method further comprises storing a representation of a relationship between the effective noise, external noise in the communication channel, and one or more variable parameters. The method further comprises storing applicable values of the variable parameters, wherein each applicable value is associated with current properties of the transmitter or current properties of the receiver or both. The method further comprises calculating an estimate of the external noise in the communication channel using the effective noise, the applicable values of the variable parameters, and the representation of the relationship.
US11228382B2

Methods and devices for controlling channel occupancy measurement quality are disclosed. A wireless device is configured for carrier aggregation under operation with frame structure type 3. The wireless device is configured to obtain a channel occupancy threshold, obtain a set of received signal strength indication, RSSI, samples on a carrier frequency and obtain a quality criterion for a channel occupancy measurement. The quality criterion defines a quality of an RSSI sample based on whether a value of the RSSI sample is within a range of a value of the channel occupancy threshold. The wireless device is further configured to determine the channel occupancy measurement for the carrier frequency based on the obtained channel occupancy threshold, the quality criterion and at least one RSSI sample of the set of RSSI samples, and perform at least one task based on the channel occupancy measurement.
US11228380B2

A method of determining the bit error ratio (BER) of a device under test (DUT) includes transmitting a first signal of an original test bit pattern over a first channel to a receiver of the DUT, and forward error correction (FEC) encoding the original test bit pattern of the first signal transmitted to the receiver of the DUT in a loopback mode of the DUT to generate an FEC encoded test bit pattern. The method further includes transmitting a second signal of the FEC encoded test bit pattern from a transmitter of the DUT over a second channel, and FEC decoding the FEC encoded test bit pattern of the second signal to obtain a decoded test bit pattern and comparing the decoded test bit pattern with the original test bit pattern to determine a BER of the DUT.
US11228378B2

The present disclosure relates to a method of estimating a transmission direction of a transmitter. The method comprises: performing a first measurement by means of a measurement system, thereby obtaining a first measurement value of a first transmitter; performing a second measurement by means of the measurement system, thereby obtaining a second measurement value of a second transmitter; obtaining position information of the first transmitter and the second transmitter; determining a position of the measurement system; and taking the first measurement value, the second measurement value, the position information as well as the position of the measurement system into account in order to estimate the transmission direction of the first transmitter. In addition, a system for estimating a transmission direction of a transmitter is described.
US11228375B2

A transmission device configured to transmit main signal light to another transmission device through a transmission line, the transmission device includes a transceiver configured to output supervisory signal light including information on supervisory control on the transmission device and the other transmission device, an attenuator configured to attenuate the supervisory signal light, a combiner configured to combine the supervisory signal light to the main signal light, and a control circuit configured to control an attenuation amount of the attenuator so that power of the supervisory signal light received by the other transmission device approaches a given target value.
US11228371B2

The disclosure relates to a transceiver operative to transmit and receive optical signals. The transceiver comprises a laser, a power splitter, a dual-polarization in-phase and quadrature modulator, DP-IQM, a first circulator (C1, C3), a second circulator (C2, C4), a first optical polarization controller, PC, a second optical polarization controller and a dual-polarization coherent receiver, DP-CRx. There is provided a system comprising a first transceiver and a second transceiver as described previously. The transceiver requires neither high speed DSP nor high resolution data converters to achieve 50 Gbaud DP-16 QAM, DP standing for dual polarization and QAM standing for quadrature amplitude modulation, yielding 400 Gb/s over 10 km below the 2.2×10−4 KP4 forward error correction (FEC) threshold.
US11228370B2

A system and method for high speed communication are provided. The system comprises a laser-based system for communication, the system comprising: an acquisition module configured to acquire and characterize a plurality of laser beams; a tracking module configured to track the acquired laser beams, the tracking module comprising: a beaconing feedback and beam divergence mechanism configured to control a beam and detect a beam; an adaptive learning unit configured to implement an adaptive learning detection algorithm to identify and track a unique optical signature from at least one of the acquired laser beams; and a pointing module configured to point at least one laser beam towards a target based on the acquired laser beams.
US11228366B2

A process of estimating a transfer function or an inverse transfer function of the optical transmitter from first data obtained by the optical receiver when a first known signal is transmitted from the transmitter to the receiver, and a temporary transfer function or a temporary inverse transfer function of the optical receiver, is performed for multiple frequency offsets between the optical transmitter and the optical receiver. At this time, the transfer function or the inverse transfer function of the optical transmitter is estimated by comparing the first data obtained by compensating at least one or none of a temporary transfer function of the optical receiver and transmission path characteristics detected in the receiver, with a first known signal before transmission to which what is not compensated for the first data between the temporary transfer function of the optical receiver and the transmission path characteristic is added.
US11228354B2

A system, a method, and a computer program product for transmission of data using a multiple input, multiple output communications system with hybrid beamforming in a layer 1 split architecture. A first portion of a signal is processed at a first portion of a physical layer located in a first portion of a base station. A frequency domain compression with statistical multiplexing is applied to the processed first portion of the signal. A compressed first portion of the signal is generated. The compressed first portion of the signal and a second portion of the signal are transmitted to a second portion of the physical layer located in a second portion of the base station.
US11228352B2

A wireless communication method, a terminal device, and a network device are provided. The method includes: a terminal device determines a plurality of transmitting beams from transmitting beams of a network device, and determines a receiving beam matched with each transmitting beam of the plurality of transmitting beams in at least two receiving beam groups of the terminal device; and the terminal device transmits a notification message to the network device, wherein the notification message is used for indicating the plurality of transmitting beams and the receiving beam matched with the each transmitting beam, and includes information to be used by the network device for distinguishing a receiving beam group to which the receiving beam matched with the each transmitting beam belongs and distinguishing the receiving beam matched with the transmitting beam in the receiving beam group.
US11228347B2

Aspects of this disclosure relate to user equipment assisted multiple-input multiple-output (MIMO) downlink configuration. Features are described for a user equipment determination of a desired transmission mode and/or active set of serving nodes for wireless communication service(s). The user equipment may submit a request for the desired mode and/or nodes to a network controller such as a baseband unit. The user equipment may subsequently receive a configuration for the requested wireless communication service(s).
US11228346B2

Methods, systems, and devices for wireless communications are described. A wireless device may receive, using a first receive port, a first signal within a first frequency band, where the first receive port may be associated with a first receive beam. The wireless device may also receive, using a second receive port, a second signal within the first frequency band concurrently with receiving the first signal, where the second receive port may be associated with a second receive beam. After receiving the first and second signals, the wireless device may process both signals. Processing the signals may include decoding both of the signals, measuring both of the signals, and/or decoding one of the signals and measuring the other of the signals. To support concurrent reception over multiple receive beams within a single frequency band, the wireless device may employ an idle antenna panel and corresponding receive ports.
US11228341B2

Provided are methods and systems for terrestrial data transmission between aircrafts and external networks, such as airline and/or airport computer systems. When an aircraft is parked at the gate, the aircraft is connected to and powered by an electrical cable, such as a stinger cable. This cable may be also be used for wired data transmission between the aircraft and the gate using broadband over power line (BPL) technology. The gate and the aircraft are each equipped with a BPL module. The aircraft may include other communication modules, such as a Wi-Fi module, a cellular module, and/or an Ethernet module. These other modules can be also used for data transmission in addition to or instead of communication through the BPL module. A communication link manager may be used to select one or more communication modules depending on availability of communication links, costs, speed, and other parameters.
US11228340B1

A method of operation on an Ethernet network having multiple Ethernet links interconnected via a network device. The method includes detecting installation of a new Ethernet link in the Ethernet network utilizing the network device. A link training process is then initiated for the new Ethernet link. The link training process includes transmitting training data at a first transmit power level and first data rate to a link partner during a data transfer interval. Network feedback information is then accessed, including performance metrics associated with the multiple Ethernet links during the training data transfer interval. The first data rate and/or first transmit power level are then adjusted to an adjusted second data rate and/or second transmit power level based on the network feedback information.
US11228329B2

A method and apparatus is provided for enhanced signal interference monitoring by sampling a signal of interest and using a representation of the sampled signal in combination with certain audio output capabilities to determine the nature of either the primary received data signal or the secondary interfering signals without requiring any specialized, dedicated external equipment, additional hardware and/or disturbing the primary functions of a radio modem.
US11228322B2

Rebalancing as a result of re-encoding a code chunk in response to scaling out of a geographically diverse storage system employing erasure coding technology is disclosed. After a scaling out event, a new erasure coding scheme can be selected. An old coding chunk generated according to an old erasure coding scheme can be re-encoded into a new coding chunk according to the new erasure coding scheme and based on a data chunk not previously protected by the old coding chunk. The re-encoding can be selected to diversify distribution of chunks, resulting in rebalancing occurring as part of re-encoding. In an embodiment, the new coding chunk can be generated in a new zone from the scaling out event. In another embodiment, the data chunk can be moved to the new zone from the scaling out event.
US11228319B1

Phase-locked loop circuitry to generate an output signal, the phase-locked loop circuitry comprising oscillator circuitry, switched resistor loop filter, coupled to the input of the oscillator circuitry (which, in one embodiment, includes a voltage-controlled oscillator), including a switched resistor network including at least one resistor and at least one capacitor, wherein an effective resistance of the switched resistor network is responsive to and increases as a function of one or more pulsing properties of a control signal (wherein pulse width and frequency (or period) are pulsing properties of the control signal), phase detector circuitry, having an output which is coupled to the switched resistor loop filter, to generate the control signal (which may be periodic or non-periodic). The phase-locked loop circuitry may also include frequency detection circuitry to provide a lock condition of the phase-locked loop circuitry.
US11228318B1

Exemplary aspects of the present disclosure involve a system and related method of PLL circuitry in a chirp signaling FMCW system having a variable PLL bandwidth (BW). To adjust the BW, the PLL circuitry may provide for variable capacitance in the circuitry. This capacitance change may allow for a bandwidth for one slope, as used for the acquisition period. The capacitance may then be adjusted to allow for a different bandwidth for another slope which is used to reset the circuitry in preparation for another frequency sweep. Adjusting the PLL BW, via variable capacitance, may be used to mitigate phase noise which can adversely the PLL.
US11228311B2

Illumination functionality is combined with a touch-sensing functionality. A first electrical conductor and a second electrical conductor are located on a substrate. A pressure-sensitive element (113) is connected across the conductors and a light-emitting device (114) is also connected between the conductors. A control circuit alternates between energizing the pressure-sensitive element with current flowing in a first direction and driving the light-emitting device with current flowing in an opposite direction.
US11228310B2

Optically isolated micromachined (MEMS) switches and related methods are described. The optically isolated MEMS switches described herein may be used to provide isolation between electronic devices. For example, the optically isolated MEMS switches of the types described herein can enable the use of separate grounds between the receiving electronic device and the control circuitry. Isolation of high-voltage signals and high-voltage power supplies can be achieved by using an optical isolator and a MEMS switch, where the optical isolator controls the state of the MEMS switch. In some embodiments, utilizing optical isolators to provide high voltages, the need for electric high-voltage sources such as high-voltage power supplies and charge pumps may be removed, thus removing the cause of potential damage to the receiving electronic device. In one example, the optical isolator and the MEMS switch may be co-packaged on the same substrate.
US11228305B2

A load drive circuit includes a power source terminal (“PST”), a power source and a load terminal connecting a load to the power source. A semiconductor switch connects the PST to the load terminal. A control circuit includes an output terminal for opening/closing the semiconductor switch. A freewheeling circuit includes a freewheeling diode and a protection switch blocks a current from the power source to the semiconductor switch when the power source is connected in a reverse manner. A first terminal connects the control circuit to a first fixed potential and a second terminal connects an anode of the freewheeling diode to a second fixed potential. A connection circuit includes a connection switch connecting the output terminal and the first terminal. The connection circuit connects the output terminal to the first terminal when a rise in a potential difference between the first terminal and the second terminal is detected.
US11228301B2

Provided is a multiplexer that includes a first filter (first transmission filter), a second filter (second reception filter), a third filter (third reception filter), a first inductor, and a second inductor. The first inductor is connected in series with one parallel arm resonator (second parallel arm resonator) of the first filter between the one parallel arm resonator and ground. The second inductor is connected in series with another parallel arm resonator (third parallel arm resonator) of the first filter between the other parallel arm resonator and ground. The first inductor and the second inductor have the same winding direction as each other from the first filter side toward the ground side thereof.
US11228300B2

An elastic wave device includes a piezoelectric layer, an IDT electrode on the piezoelectric layer, a high-acoustic-velocity member, a low-acoustic-velocity film between the high-acoustic-velocity member and the piezoelectric layer. The piezoelectric layer is made of lithium tantalate, the IDT electrode includes metal layers including an Al metal layer and a metal layer having a higher density than Al. Expression 1 is satisfied: 301.74667−10.83029×TLT−3.52155×TELE+0.10788×TLT2+0.01003×TELE2+0.03989×TLT×TELE≥0 expression 1, where λ represents a wavelength defined by an electrode finger pitch of the IDT electrode, TLT (%) represents a normalized film thickness of the piezoelectric layer to the wavelength λ, and TELE (%) represents a normalized film thickness of the IDT electrode in terms of Al to the wavelength λ.
US11228298B2

A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
US11228295B2

A low pass filter includes a first inductor, a second inductor magnetic-field-coupled to the first inductor, a third inductor, and a first capacitor. The first inductor is electrically connected between a first port and an intermediate node, being a node to which the second inductor is electrically connected, between the first inductor and the second port. The second inductor is electrically connected between the intermediate node and a ground terminal. The third inductor is electrically connected between the intermediate node and the second port, and a first parallel resonant circuit is defined by the third inductor and the first capacitor. The first inductor and the second inductor are coupled to each other in such a relationship that a negative inductance is generated between the intermediate node and the third inductor due to magnetic field coupling between the first inductor and the second inductor.
US11228294B2

A method of manufacturing a nanoelectromechanical resonator allows for uniform tuning of a resonant frequency. The nanoelectromechanical resonator can be mass produced and used to sense the presence of a selected gas.
US11228291B2

Chopper amplifiers with multiple sensing points for correcting input offset are disclosed herein. In certain embodiments, a chopper amplifier includes chopper amplifier circuitry including an input chopping circuit, an amplification circuit, and an output chopping circuit electrically connected in a cascade along a signal path. The chopper amplifier further incudes a multi-point sensed offset correction circuit that generates an input offset compensation signal based on sensing a signal level of the signal path at multiple signal points. Furthermore, the multi-point sensed offset correction circuit injects the input offset compensation signal into the signal path to thereby compensate for input offset voltage of the amplification circuit while suppressing output chopping ripple from arising.
US11228288B2

According to a first aspect of the embodiments, a microphone mixer is provided comprising: an input adapted to receive differential microphone (mic) output signals; a gain-trim circuit adapted to receive the differential mic output signals, and which includes a substantially fully differential amplifier adapted to amplify the received differential mic output signals through use of a gain-trim output adjustment device that provides a variable gain amount ranging from a first gain-trim gain value to a second gain-trim gain value, to produce differential gain-trim circuit output signals; a fader circuit adapted to receive the differential gain-trim circuit output signals, and which includes a differential amplifier adapted to attenuate the received differential gain-trim circuit output signals through use of a fader output adjustment device that provides a variable gain amount ranging from a first fader gain value to a second fader value; and a common adjustment apparatus that mechanically ties the gain-trim output adjustment device with the fader output adjustment device such that the first gain-trim gain value and first fader gain value are obtained substantially simultaneously at a first position of the common adjustment apparatus, and the second gain-trim gain value and second fader gain value are obtained substantially simultaneously at a second position of the common adjustment apparatus.
US11228286B2

A linear amplifier outputs differential signals corresponding to differential signals input to a first signal input terminal and a second signal input terminal, and includes a first resistor, a second resistor, a third resistor, a fourth resistor, a first capacitor, a second capacitor, a third transistor, a fourth transistor, a differential amplifier, and a signal processing circuit. The signal processing circuit includes a first transistor and a second transistor, and includes a resistor as a common voltage output part that outputs a common voltage. The differential amplifier receives the common voltage and a reference voltage, and applies a voltage corresponding to the voltage difference between the common voltage and the reference voltage to the control terminals of the transistors.
US11228282B2

An H-bridge power amplifier arrangement with envelope tracking is disclosed. The power amplifier arrangement comprises four elements form the four corner bars of a first H-bridge structure with a load formed as the cross bar of the first H-bridge structure. The power amplifier arrangement further comprises a rectifier circuit coupled between the first positive power supply and the third positive power supply configured to recycle the sinking envelope current.
US11228278B2

A system and method for automated shutdown, disconnect, or power reduction of solar panels. A system of solar panels includes one or more master management units (MMUs) and one or more local management units (LMUs). The MMUs are in communication with the LMUs with the MMUs and LMUs “handshaking” when the system is in operation. The MMUs are connected to one or more controllers which in turn are connected to emergency detection sensors. Upon a sensor detection of an emergency, the associated MMU is notified which in turn instructs associated LMUs to take appropriate action. In the event that communication with the MMUs has been cut off, the LMUs take the initiative to shut down, disconnect, or reduce the output of associated string(s) of solar panels.
US11228277B2

A method for determining a system power, which is maximally possible at a point in time, of a photovoltaic system, comprising a plurality of photovoltaic generators, wherein the photovoltaic system is not operated at the maximally possible system power at the point in time, and wherein at least some of the photovoltaic generators of the plurality of photovoltaic generators are operated at different operating points at the point in time, is disclosed. The method and associated apparatus includes defining a mapping between the different operating points of the individual photovoltaic generators and virtual operating points of a standard generator, determining virtual operating points of a standard generator corresponding to the different operating points of the individual photovoltaic generators based on the mapping, determining a characteristic curve of the standard generator from the virtual operating points of the standard generator, determining a maximum of the characteristic curve, and determining the maximally possible system power at the point in time from the maximum of the characteristic curve of the standard generator.
US11228275B2

Several pre-assemblies holding panels of photovoltaic cells are constructed and pre-wired in a factory. The pre-assemblies are shipped to a solar farm, where they are lifted above posts secured to the ground using, for example, using an excavator connected to an end effector. The pre-assemblies are then connected to the posts and electrically coupled to one another. Such installation of solar panels in a solar farm may be faster and less labor-intensive than other types of installation.
US11228272B2

A variety of methods, controllers and electric machine systems are described that facilitate pulsed control of electric machines (e.g., electric motors and generators) to improve the machine's energy conversion efficiency. Under selected operating conditions, the electric machine is intermittently driven (pulsed). The pulsed operation causes the output of the electric machine to alternate between a first output level and a second output level that is lower than the first output level. The output levels are selected such that at least one of the electric machine and a system that includes the electric machine has a higher energy conversion efficiency during the pulsed operation than the electric machine would have when operated at a third output level that would be required to drive the electric machine in a continuous manner to deliver the desired output. In some embodiments, the second output level is zero torque.
US11228269B2

The present disclosure provides an arbitrary double vector and model prediction thrust control method and system, which belongs to the technical field of linear induction motor control. The present disclosure combines a double vector modulation algorithm to improve the modulation accuracy, in which two voltage vectors are used in one cycle, so that the amplitude of the fluctuation can be reduced, thereby improving the running performance of the motor. The addition of the double vector modulation strategy increases the complexity of the algorithm, and the calculation process is too complicated. The present disclosure further proposes a simplified search process instead of the traditional repeated calculation and comparison method, which eliminates the need for a complex online calculation process, thereby simplifying the implementation process of the algorithm in the actual system.
US11228264B2

A control circuit, a system and a method 200 of determining a position of a rotor in a permanent magnet motor PM1 in a state when the rotor is freely rotating, the motor being connected to a direct voltage link 101 via an inverter circuit 102, wherein the inverter circuit is operable for connecting windings of a stator of said motor to the direct voltage link, the method comprising the following a step a) short circuiting 201 the windings of the stator of said permanent magnet motor, a step b) measuring 202 a back electromotive force EMF of the short-circuited windings of the stator; and a step c) determining 203 the position of the rotor by means of the measured back EMF.
US11228250B2

A flyback power switch structure for bridgeless rectifier includes a main transformer, a primary side circuit, a secondary side circuit, and a feedback control circuit. The main transformer includes a primary coil and a secondary coil. The primary side circuit is connected to the input AC power supply and the primary coil of main transformer, and is provided with a first switch component, a second switch component, a third switch component, and a fourth switch component. The secondary side circuit is connected to the secondary coil of said main transformer, generating an output voltage. The feedback control circuit is connected to the secondary side circuit and the first, second, third and fourth switch components of primary side circuit, comparing phase signals according to the feedback signals and the first and second terminal voltages of an input AC power supply to control the actuation of the first, second, third and fourth switch components.
US11228240B2

A power converter includes a power switch controlling current flow in the power converter and a variable capacitance coupled in parallel to the power switch. The variable capacitance is configured to add a frequency jitter to the power converter.
US11228218B2

A stator includes a stator core having a core back and a plurality of teeth, an insulator, and a coil formed by winding a conductive wire on an outer surface of the insulator to laminate a plurality of winding layers, wherein the insulator includes a cylindrical-shaped part with the conductive wire wound, a flange part provided at two ends of the cylindrical-shaped part and expanding in a lamination direction of the winding layers, and a contact part on the cylindrical-shaped part side of the flange part and contacting each of the winding layers in a winding direction; and the contact part includes a slope part inclined in the lamination direction of the winding layers with respect to a winding direction of the conductive wire and guiding the conductive wire from a winding end part of a certain winding layer to a winding start part of a subsequent winding layer.
US11228217B2

A bus bar assembly includes bus bars and a bus bar holder that is made of an insulating material and holds the bus bars in a non-contact state. The bus bars include base portions that overlap with other bus bars in the axial direction, and connecting portions extending from the base portions along the radial direction. At least two of the bus bars include stepped portions extending toward the other bus bars between proximal ends of the connecting portions and connection ends connected to windings. The bus bar holder molds the base portions and the stepped portions in a state where the connection ends are exposed.
US11228215B2

A method includes forming one or more cores, wherein each of the one or more cores has a cross section corresponding to a conductor to be subsequently formed, forming an insulator around the one or more cores, removing the one or more cores to expose one or more recesses within the insulator, and forming one or more conductors in at least one of the one or more recesses of the insulator such that the cross sections of the one or more conductors conform to an interior surface of the one or more recesses in the insulator.
US11228213B2

A power transmitter (101) for wirelessly providing power to a power receiver (105) comprises a retriever (209) retrieving calibration data comprising a set of calibration parameters for each of a plurality of spatial positions of a calibration receiver relative to a calibration transmitter. A test generator (207) generates a test drive signal for a transmitter coil (103) to generate an electromagnetic test signal, and a test processor (213) determines a set of test parameters in response to the test drive signal. A position estimator (207) estimates a position of the power receiver relative to the power transmitter in response to a comparison of the test parameters to the calibration parameters for the plurality of spatial positions. The parameters include a power loss measure, a resonance frequency measure, and a coupling measure. The approach and specific parameters provide a substantially improved position estimation.
US11228212B2

The present disclosure describes wireless power transfer systems and methods. One such system comprises a transmitter coil coupled to a power source; a receiver coil coupled to a load; and a metamaterial screen disposed between the transmitter coil and the receiver coil and configured to amplify and focus a magnetic field generated by the transmitter coil towards the receiver coil in a non-contact manner. Other systems and methods are also disclosed.
US11228193B2

An automatically generated and customized fast charging process results in reduced degradation in the battery cell. An algorithm for a particular battery cell profile is automatically generated and customized to minimize degradation due to fast charging for that particular batch. To generate the custom algorithm, battery cell information is retrieved for a profile of a battery, wherein each battery profile may have a particular manufacturer, model, type, electrode batch, and potentially other specific identification information. Each battery cell is charged from a particular SOC level and at a selected C-rate, and then discharged. During discharge, the battery cell is monitored for detection of lithium plating or other undesirable effects. A lookup table is automatically generated from the battery cell information, and can be provided to devices and/or battery management systems. The BMS then uses the lookup table to apply a charging process that is customized to the on-board battery.
US11228183B2

The present disclosure is directed to self-synchronizing devices that can connect and self-synchronizes voltage, frequency and phase of two or more power sources. The disclosed embodiments enable a modular power system to serve as the primary or secondary source of power for applications requiring loads from a few kilowatts (kW) to the scale of megawatts (MW). The modular system is generalized to use either a single or multiple power generation sources at once, with the ability to connect and self-synchronize voltage, frequency, and phase of a variety of different types of power sources. Power control systems designed to function with self-synchronizing technology enable a modular power system to satisfy a wide variety of needs, simplifying the existing method of achieving synchronization and enabling new features of resiliency and expandability. The self-synchronization can be implemented into a wide variety of electronics including but not limited to inverters and generator controllers.
US11228166B1

A cable tray support system for supporting cables above an array of server racks in a data center is provided, along with a method of assembly. The system includes a free-standing cable tray support structure having vertical support posts disposed between the server racks in the array linked together by horizontal support members. Coupling assemblies couple the top ends of each vertical support posts with opposing ends of two horizontal support members arranged. The horizontal support members are sized to space the plurality of vertical support posts between the server racks of the array when the vertical support posts are coupled thereto. Tray supports mounted on along the horizontal support members support an upper and lower cable tray. Floor mounts anchor the bottom ends of the vertical support posts to the floor. The cable tray support structure may be assembled either before or after the array of server racks is installed in the data center, as it is mechanically independent from the server racks and ventilation components and is supported only by the floor.
US11228161B2

A semiconductor laser array may include a plurality of semiconductor lasers and a common substrate configured as a common anode of said plurality of semiconductor lasers. Each semiconductor laser may have a pn junction region between the common anode and a cathode contact layer. The pn junction region may include a p-doped layer and an n-doped layer. The p-doped layer of the pn junction region may face the substrate. The semiconductor laser array circuit arrangement may include a semiconductor laser array, each laser may be controlled by a driver with an n-MOSFET.
US11228159B2

A semiconductor laser device includes first heat radiator (10) having first flow path (11) and second flow path (12) inside to allow a flow of a refrigerant and second heat radiator (20) put in contact with an upper surface of the first heat radiator. The first flow path and the second flow path are independent of each other. The second heat radiator includes an insulating member that internally has third flow path (23) communicating with first flow path (11). The semiconductor laser device further includes lower electrode block (60) disposed on a portion of an upper surface of the second heat radiator, submount (30) being made of a conductive material and being disposed on a remainder of the upper surface of second heat radiator (20), semiconductor laser element (40) disposed on an upper surface of submount (30), and upper electrode block (61) disposed such that submount (30) and semiconductor laser element (40) are clamped between the upper electrode block and second heat radiator (20). Second flow path (12) is formed below a zone for the disposition of lower electrode block (60).
US11228151B1

An angular connector and a manufacturing method thereof are provided. The angular connector includes a plug, a transmission cable connected to the plug, an inner molding body covering part of the plug and part of the transmission cable, a positioning case fastened to the plug, and an outer molding body that is connected to the inner molding body and the positioning case. The plug has an insertion slot recessed in an end of the insertion portion. An insertion portion of the plug is maintained to be exposed from the positioning case by an insertion length along the insertion direction, and the insertion length is within a range of 6.5 mm to 6.8 mm. The outer molding body and the positioning case jointly define a corner structure having an angle that is greater than or equal to 90 degrees and that is less than 180 degrees.
US11228149B2

High-speed connectors that save space in an electronic device, are simple to connect, and are readily manufactured. One example can provide a high-speed connector having high-speed connections. The high-speed connections can be integrated with low-speed connections in a board-to-board structure to save space in an electronic device. An example can provide high-speed connections that are simple to connect. The board-to-board structure can include a board-to-board plug, where each high-speed connection includes a high-speed contact having a lateral portion. The lateral portion can include right-angle tabs to guide a central conductor of a coaxial cable. The central conductor of each coaxial cable can be soldered to a corresponding lateral portion. Ground contacts for the board-to-board plug can include crimping portions to connect to an outer shield of each coaxial cable. These high-speed connectors can be readily manufactured by utilizing stamped contacts and molded housings.
US11228148B2

There is provided a power connector system for electrically connecting a power source to a device. The power connector comprises a first component and a second component which each have a plurality of electrical contacts disposed on a face thereof. The contacts each include an electrically resistive element having an impedance. When the first and second components are coupled, a logic unit controls enables current flow between the first and second components based on the impedances.
US11228142B2

A plug connection for electrically and mechanically coupling a pair of electrical conductors includes a coupling having a coupling housing and a lever with a locking element, a pin strip having a pin strip housing with a recess receiving the locking element, and a projection arranged between the lever and the pin strip housing. The lever is rotatably mounted at the coupling housing orthogonally to a plug-in direction. The coupling housing is arranged at least in sections on the pin strip housing in a form-fitting manner and the locking element is arranged adjacent to the recess in a pre-locking position of the lever. The locking element is brought into an operative connection with the recess by rotation of the lever. When a plugging force is applied onto the coupling housing, the projection generates a counter force on the lever against the plugging force.
US11228140B2

An electronic device connection system has a cable, a cable connector, and an electronic device. The electronic device has a socket. When the cable connector is mounted through the socket, the cable is electrically connected to the electronic device. The cable connector has a casing, a resilient latch, and a pulling member. The casing forms a protrusion and a first engaged opening. The resilient latch forms a hooked opening and a first hook. The protrusion can be engaged in the hooked opening, and the first hook can be engaged in the first engaged opening so the resilient latch is firmly fixed on the casing. Thus, the resilient latch may not be separated from the casing when a user pulls the pulling member, which ensures that the casing will be detached from the socket when the pulling member is pulled.
US11228138B2

A connector assembly for protecting electrical connections in a hazardous environment is provided. The connector assembly includes a first connector, a plug casting, and an elongated mesh grip. The plug casting circumscribes and is secured onto the first connector. The elongated mesh grip is coupled to the plug casting, the mesh grip including a mesh sized to surround the electrical cable, the mesh including a first end and a second end. The mesh has a diameter that is a transverse diameter of a channel defined by the mesh and configured to receive an electrical cable therethrough, wherein the diameter of the mesh decreases when one of the first and second ends of the mesh is pulled away from the other of the first and second ends of the mesh.
US11228132B2

A communications connector has a middle barrel, top sled, and bottom sled. The top sled has a top wire opening and a top insulation displacement contact (IDC) hole with the top IDC hole providing access to a wire inserted into the top wire opening. The top sled has a top IDC channel containing a top IDC. The bottom sled has a bottom wire opening and a bottom IDC hole with the bottom IDC hole providing access to a wire inserted into the bottom wire opening. The bottom sled also has a bottom IDC channel with a bottom IDC. The top and bottom sleds are can be fitted together and inserted into the middle barrel with the top IDC engaging a wire inserted into the bottom wire opening through the bottom IDC hole and the bottom IDC engaging a wire inserted into the top wire opening through the top IDC hole.
US11228131B2

Connector apparatus having a female connector assembly and a male connector assembly. The female connector assembly includes a female housing, a connector position assurance (CPA) member for assuring the engagement of the male connector assembly with the female connector assembly, and a first terminal position assurance (TPA) member for assuring that terminals for the female connector assembly are positioned properly. The female housing further includes a connector latch used to securely hold together a connector apparatus. The female housing has TPA protection ribs and CPA protection walls. The male housing has TPA protection ribs.
US11228126B2

Embodiments are directed towards apparatuses, methods, and systems for a connector having a housing body to couple a dual in-line memory module (DIMM) to a printed circuit board (PCB). In embodiments, the housing body includes first and second opposing ends of the connector and a first and a second latch coupled at the respective first and second opposing ends of the connector to engage the DIMM. In embodiments, the first and the second opposing ends have respective first and second heights relative to a height of the housing body to allow the DIMM to be inserted or removed at an angle when disengaged from the first and second latch. In embodiments, one or more of the latches are removably coupled to the connector and/or can be rotated into a lay-flat position to allow the DIMM to be removed at an angle. Additional embodiments may be described and claimed.
US11228125B1

A disclosed socket may include (1) a base that is arched to match a degree of warpage experienced by an electrical component and (2) an array of contact pins arranged across the base. A first side of the contact pins may be electrically coupled to a circuit board, and a second side of the contact pins may protrude from the base opposite the circuit board to establish contact with the electrical component despite the degree of warpage experienced by the electrical component. Various other apparatuses, systems, and methods are also disclosed.
US11228121B2

A pressure sensing method includes providing a first receive antenna array that receives a first signal at a first frequency, providing a second receive antenna array that receives a second signal at a second frequency that differs from the first frequency, coupling a diode to the first receive antenna array and the second receive antenna array, coupling a transmit antenna array to the diode, receiving, by the diode, the first signal at the first frequency and the second signal at the second frequency, outputting, by the diode, a third signal at a third frequency that is a difference between the first frequency and the second frequency, receiving, by the transmit antenna array from the diode, the third signal at the third frequency, and outputting, by the transmit antenna array, the third signal at the third frequency.
US11228117B2

A support member for arrangement with additional support members to form an array of dipole antennas. The support member includes a first portion of a conductive arm of a dipole antenna, and a first portion of a conductive arm of another dipole antenna. A second portion of the conductive arm of the dipole antenna extends from the first portion of the conductive arm of the dipole antenna towards the first portion of the conductive arm of the other dipole antenna, defining a gap in a direct current path between the second portion of the conductive arm of the dipole antenna and the first portion of the conductive arm of the other dipole antenna.
US11228111B2

An antenna that can be embedded in a computer system or device is described. In an example, the antenna includes a feed operable to transmit and receive power. The antenna includes a first arm being extended from the feed towards a first direction to form a first partial loop. The antenna further includes a second arm being extended from the feed towards a second direction to form a second partial loop. The second direction is different from the first direction.
US11228104B2

A calibration device of an array antenna is for a transmission means including a plurality of antenna elements and transmission signal processing systems corresponding to the plurality of antenna elements, in which an antenna element transmission signal is calibrated for amplitude and phase differences and a time difference for each of the antenna elements on the basis of a transmission signal calibrating value, the transmission means being for generating a plurality of transmission radio waves applied with amplitude and phase differences and a time difference corresponding to each of the plurality of antenna elements and emitting the transmission radio waves from the respective antenna elements, the calibration device including: a multicarrier calibration signal generating means for generating a plurality of calibration signals based on, in correspondence, a plurality of subcarriers including a first frequency unit of a subcarrier to which a subcarrier symbol is assigned and a second frequency unit not assigned a subcarrier symbol, the plurality of calibration signals being different for each of the plurality of antenna elements; injection means for injecting a plurality of calibration signals generated by the multicarrier calibration signal generating means into the transmission means in one-to-one correspondence to the transmission signal processing systems of the plurality of antenna elements; extraction means for extracting calibration signals processed by the transmission signal processing systems of the plurality of antenna elements; a demultiplexing means for demultiplexing the calibration signals, for the respective antenna elements, extracted by the extraction means into a frequency unit of an assigned subcarrier and a frequency unit not assigned as a subcarrier; and a calibration processing means for obtaining a calibration value for calibrating the amplitude and phase differences and the time difference between the transmission signal processing systems of the plurality of antenna elements using the signals demultiplexed by the demultiplexing means, and providing the transmission signal calibrating value based on the obtained calibration value to the transmission means.
US11228090B2

An antenna structure for an Access Point includes at least one connecting member and a plurality of radiating portions on a structural rear plate of the Access Point which from. The radiating portions form a plurality of resonance paths. The at least one connecting member feeds current into the plurality of radiating portions, each of the radiating portions generates radiation signals in a first frequency band. A wireless communication device using the antenna structure is also provided.
US11228083B2

A quick action connector comprises a quick action base and a cam lock, wherein: the quick action base comprises a retaining sleeve, a base body, at least two rivets, a disk, and a biasing spring; and the cam lock comprises a cam arm having a tapered end with rivet slots, wherein the rivets extend from an inner diameter of the retaining sleeve, the spring biases the disk the rivets when the cam arm is not inserted into the base and biases the disk against the tapered end of the cam arm when the cam lock is inserted in the base and rotated such that the rivet slots engage the rivets.
US11228071B2

A battery cell of a battery pack to power an electric vehicle can include a housing to at least partially enclose an electrode assembly is provided. The battery cell can include a vent plate coupled with the housing via a glass weld at a lateral end of the battery cell. The vent plate can include a scoring pattern to cause the vent plate to rupture in response to a threshold pressure. A first end of a polymer tab can be electrically coupled with the vent plate at an area within a scored region defined by the scoring pattern. A second end of the polymer tab can be electrically coupled with an electrode assembly. The polymer tab can melt in response to either a threshold temperature or a threshold current within the battery cell.
US11228065B1

A secondary battery recombination system includes catalyst and hydrophobic gas diffusion layers defining an electrode that recombines hydrogen and oxygen into water, and a scaffold encapsulating and in non-bonded contact with the electrode. The electrode may be carbon cloth, carbon felt, carbon foam, or carbon paper. The scaffold may be expanded metal or perforated foil.
US11228063B2

A battery pack including first and second battery contactors respectively having first ends electrically connected to positive and negative electrode terminals of a battery; first and second charging contactors respectively having first ends electrically connected to second ends of the first and second battery contactors; a second power connector of a charger having first and second output terminals respectively electrically connected to the first and second input terminals being connected to the first power connector; and a control unit configured to, when a charging voltage is not applied from a power source of the charger to the battery pack between the first output terminal and the second output terminal, control at least one of the first charging contactor and the second charging contactor to change between a turn-on state and a turn-off state to diagnose a fault of each of the first charging contactor and the second charging contactor.
US11228058B2

A flow battery according to an embodiment includes a cathode and an anode, an electrolytic solution, and a flow device. The electrolytic solution includes an indium component and a halogen species and contacts the cathode and the anode. The flow device causes the electrolytic solution to flow.
US11228047B2

A system for overheating gases at the inlet of a SOEC/SOFC-type solid oxide stack, the stack including a main body that has first and second zones separated by a median plane, and inflow and outflow conduits, the zones include gas circulation circuits extending in the form of a spiral and communicating by means of a passage passing through the main body. A gas flow to be heated entering the inflow conduit circulates in the first gas circulation circuit and passes through the passage to then circulate in the second gas circulation circuit and in the conduit for the outflow of the reheated gases in order to reach the inlet of the SOEC/SOFC-type solid oxide stack.
US11228040B2

The invention relates to a gas distributor plate for a fuel cell, comprising a first distribution structure for distributing a fuel to a first electrode and a second distribution structure (60) for distributing an oxidation agent to a second electrode. According to the invention, there is at least one wire element (80) in at least one of the distribution structures (60). The invention further relates to a fuel cell, which comprises at least one membrane electrode unit having a first electrode and a second electrode, which are separated from each other by a membrane, and at least one gas distribution plate according to the invention.
US11228032B1

An electrochemical component has a green secondary electrode including a conductive substrate, homogeneous pre-synthesized calcium zincate in direct contact with the conductive substrate, and a combination of styrene-butadiene rubber and sintered polytetrafluoroethylene binding the conductive substrate and calcium zincate together.
US11228029B2

A method for producing a lithium metal negative electrode structure including the steps of: (a) forming a lithium metal layer on a portion of one side or both sides of a current collector, wherein a non-coated portion of the current collector, on which a tab will be formed, is included on one side of the current collector, and wherein a stepped part is present between the non-coated portion of the current collector and the coated portion of the lithium metal layer; (b) coating and curing a photocurable material, or attaching an insulating tape, onto the stepped part between the non-coated portion of the current collector and the coated portion of the lithium metal layer; and (c) punching the result of step (b) into a unit electrode to produce the lithium metal negative electrode structure.
US11228020B2

The present disclosure relates to a display back plate and a display device. The display back plate includes a display area and a non-display area surrounding the display area, wherein the non-display area is provided with at least one circle of first cofferdam surrounding the display area, a first thin film encapsulation layer is arranged on the first cofferdam, and the non-display area is provided with a fan-out area, a second cofferdam is arranged on one side of the first cofferdam close to the fan-out area, the second cofferdam is provided with a first bonding pattern including a plurality of protrusions, and the first thin film encapsulation layer at least partially covers the protrusions.
US11228004B2

A compound comprising a ligand LA coordinated to a metal M wherein ring A, ring T, and ring W are independently selected from a 5-membered or 6-membered heterocyclic or carbocyclic ring, and the ring W is fused to the ring T. The metal compounds having a ligand LA can be found in an OLED that includes an organic layer positioned between an anode and a cathode where the organic layer comprises a metal compound above having a ligand LA disclosed herein. We also describe a consumer product comprising the OLED.
US11228003B2

A compound having a formula M(LA)(LB)(LC) is described. In formula M(LA)(LB)(LC), ligands LA and LB are each a mono-anionic bidentate ligand coordinated to metal M forming a 5-member cyclometalated ring and ligands LA and LB are covalently linked by a linking group. There is at least one loop of M-LA-linking group-LB-M having only arylene or heteroarylene groups in the loop other than M. In the compound, each ring in the linking group is part of a backbone of the loop; and either (i) the loop comprises a specific DBX moiety and the linking group comprises two or more arylene or heteroarylene groups, or (ii) the linking group comprises three or more arylene or heteroarylene groups. Formulations, OLEDs, and consumer product containing the compound are also disclosed.
US11228002B2

A compound having a formula M(LA)(LB)(LC) is disclosed. Each of ligands LA and LB are mono-anionic bidentate ligands coordinated to metal M forming a 5-member cyclometalated ring. Ligands LA and LB are covalently linked by a first linking group, where there is at least one loop of M-LA-first linking group-LB-M having only carbocyclic or heterocyclic groups in the loop other than M. Wherein the first linking group includes multiple aliphatic or aromatic rings that are separated by at least one single bond, where each ring in the first linking group is part of the backbone of the loop. Devices, such as organic light emitting diodes, including the compounds are also disclosed.
US11228001B2

Disclosed are a heterocyclic compound represented by Formula 1 and an organic light emitting device using the same. The heterocyclic compound is used as a material for hole injection layer, hole transport layer, hole injection and transport layer, light emission layer, electron transport layer, or electron injection layer of the organic light emitting device and provides improved efficiency, low driving voltage, and improved lifetime characteristic.
US11227991B2

A semiconductor memory device includes first conductive lines extending in a first direction on a substrate, second conductive lines extending in a second direction over the first conductive line, the first and the second conductive lines crossing each other at cross points, a cell structure positioned at each of the cross points, each of the cell structures having a data storage element, a selection element to apply a cell selection signal to the data storage element and to change a data state of the data storage element, and an electrode element having at least an electrode with a contact area smaller than that of the selection element, and an insulation pattern insulating the first and the second conductive lines and the cell structures from one another.
US11227983B2

A method of manufacturing a light emitting device includes: providing a substantially flat plate-shaped base member which in plan view includes at least one first portion having an upper surface, and a second portion surrounding the at least one first portion and having inner lateral surfaces; mounting at least one light emitting element on the at least one first portion; shifting a relative positional relationship between the at least one first portion and the second portion in an upper-lower direction to form at least one recess defined by an upper surface of the at least one first portion that serves as a bottom surface of the at least one recess and at least portions of the inner lateral surfaces of the second portion that serve as lateral surfaces of the at least one recess; and bonding the at least one first portion and the second portion with each other.
US11227977B2

An optoelectronic semiconductor device includes a semiconductor layer sequence having an active zone that generates radiation, a first electrode that supplies current directly to a bottom side of the semiconductor layer sequence, and a second electrode that supplies current and extends from the bottom side to a top side of the semiconductor layer sequence opposite the bottom side, wherein the second electrode includes at least one current distribution structure on the top side, and the current distribution structure is impermeable to the generated radiation and electrically connected in a plurality of contact regions to at least one further component of the second electrode and configured for lateral current distribution starting from the contact regions.
US11227974B2

A nitride semiconductor light-emitting element includes an n-type cladding layer including n-type AlGaN having a first Al composition ratio, a barrier layer including AlGaN that is located on the n-type cladding layer side in a multiple quantum well layer and has a second Al composition ratio greater than the first Al composition ratio, and a graded layer that is located between the n-type cladding layer and the barrier layer and has a third Al composition ratio that is between the first Al composition ratio and the second Al composition ratio, wherein the third Al composition ratio of the graded layer increases at a predetermined increase rate from the first Al composition ratio toward the second Al composition ratio.
US11227966B2

Provided is a photoelectric conversion device capable of suppressing diffusion of a dopant in a p layer or n layer into an adjacent layer. A photoelectric conversion device is provided with a silicon substrate, a substantially intrinsic amorphous layer formed on one surface of the silicon substrate, and a first conductive amorphous layer that is formed on the intrinsic amorphous layer. The first conductive amorphous layer includes a first concentration layer and a second concentration layer that is stacked on the first concentration layer. The dopant concentration of the second concentration layer is 8×1017 cm−3 or more, and is lower than the dopant concentration of the first concentration layer.
US11227963B2

A carbon based material, an optical rectenna and a semiconductor device including the same are provided. The carbon based material includes a carbon nanomaterial and a metal material bonded to the carbon nanomaterial, where the carbon nanomaterial includes a fluorine material.
US11227957B1

Provide is a protective component, including a tubular sidewall being elastic and encloses to form a through hole for receiving the wire box connector; a limiting portion provided on an inner wall surface of the tubular sidewall and configured to clamp a recess on the wire box connector; and a tubular protective portion being elastic and is connected to the tubular sidewall to cover an end portion of the tubular sidewall. The protective component of the present disclosure may prevent the protective component from falling off from a wire box connector after mounting to improve mounting efficiency of the wire box connector and may reduce micro-cracks caused by colliding with a solar cell module.
US11227956B2

A semiconductor device includes: a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions, where the nanosheets comprise a first semiconductor material; inner spacers between the nanosheets and at opposite ends of the nanosheets, where there is an air gap between each of the inner spacers and a respective source/drain region of the source/drain regions; and a gate structure over the fin and between the source/drain regions.
US11227952B2

Integrated circuit devices including a fin shaped active region and methods of forming the same are provided. The devices may include a fin shaped active region, a plurality of semiconductor patterns on the fin shaped active region, a gate electrode on the plurality of semiconductor patterns, and source/drain regions on opposing sides of the gate electrode, respectively. The gate electrode may include a main gate portion extending on an uppermost semiconductor pattern and a sub-gate portion extending between two adjacent ones of the plurality of semiconductor patterns. The sub-gate portion may include a sub-gate center portion and sub-gate edge portions. In a horizontal cross-sectional view, a first width of the sub-gate center portion in a first direction may be less than a second width of one of the sub-gate edge portions in the first direction.
US11227951B2

A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
US11227941B2

A bipolar transistor has a subcollector layer and a stack of collector, base, and emitter layers on the subcollector layer. On the subcollector layer are collector electrodes. On the base layer are base electrodes. The collector layer includes multiple doped layers with graded impurity concentrations, higher on the subcollector layer side and lower on the base layer side. Of these doped layers, the one having the highest impurity concentration is in contact with the subcollector layer and has a sheet resistance less than or equal to about nine times that of the subcollector layer.
US11227933B2

A ferroelectric field effect transistor includes a semiconductor substrate that contains a semiconductor channel that extends between a source region and a drain region. A ferroelectric gate dielectric layer is disposed over the semiconductor channel, and includes a ferroelectric material having a charge trapping band including electronic states generated by interfacial traps of the ferroelectric material. A gate electrode is located on the ferroelectric gate dielectric layer, and is configured to provide an on-state and an off-state for the ferroelectric field effect transistor through application of an on-voltage and an off-voltage, respectively, from a gate bias circuit. An energy level of the charge trapping band during the on-state is offset from an energy level of minority charge carriers of the semiconductor channel. Charge trapping in the ferroelectric material is avoided during operation of the ferroelectric field effect transistor, thereby increasing the endurance of the ferroelectric field effect transistor.
US11227929B2

A method includes forming a trench over a substrate, wherein the trench is surrounded by gate spacers and an inter-layer dielectric layer, depositing a dielectric layer on a bottom and along sidewalls of the trench, depositing a metal layer over the dielectric layer, depositing a protection layer over the metal layer, wherein the protection layer has an uneven thickness, applying an etch-back process to the protection layer and the metal layer, wherein as a result of applying the etch-back process, a portion of the metal layer has been removed and at least a portion of the protection layer remains at the bottom of the trench and removing the protection layer from the trench.
US11227928B1

In a general aspect, a trench-gate field-effect transistor can include an active region and a termination region. The termination region can include a structure where a portion in which formation of a PN junction is prevented (e.g., a termination extension and one or more semiconductor mesas) is overlapped with a portion of the trench-FET that includes a boundary (edge, etc.) between trenches (or portions of trenches) lined with only shield (thick oxide) and trenches lined with a stepped-shield dielectric (SSO) structure (e.g., shield dielectric and gate dielectric). That boundary can be referred to an SSO edge. Prevention of PN junction formation (e.g., during a channel and/or body implant for the trench-FET), in the disclosed approaches, can be accomplished using a polysilicon layer to block formation of, e.g., a p-type layer, in a semiconductor substrate (e.g., an n-type semiconductor region, epitaxial layer, etc.).
US11227927B2

Plural gate trenches are formed on an upper surface side of a semiconductor substrate of a first conductivity type. Gate electrodes are embedded in the plural gate trenches. Plural dummy gate trenches are formed at equivalent intervals between the neighboring gate trenches on the upper surface side of the semiconductor substrate. Dummy gate electrodes are embedded in the plural dummy gate trenches and connected with an emitter electrode. An interval between the gate trench and the dummy gate trench that neighbor each other is shorter than an interval between the neighboring dummy gate trenches.
US11227926B2

The present disclosure provides a semiconductor device. The semiconductor device comprises a substrate, a plurality of isolation regions in the substrate and an active region surrounded by the isolation regions. A p-type doped region is interposed between two n-type doped regions in the substrate. A buried gate structure is formed in the substrate and disposed between the p-type doped region and the n-type doped region. The buried gate structure comprises a gate conductive material, a gate insulating layer disposed over the gate conductive material and a gate liner surrounding the gate conductive material and the gate insulating layer. A plurality of contact plugs are formed on the p-type doped region and the plurality of n-type doped regions.
US11227925B2

The present disclosure provides a semiconductor device. The semiconductor device includes a transistor. The transistor includes a first source/drain (S/D) region, a second S/D region and a gate structure. The first S/D region is defined in a first well on a double diffusion layer, wherein the first well and the double diffusion layer define a diode at a junction therebetween, wherein an anode of the diode and the first S/D region form an open circuit therebetween. The gate structure is between the first S/D region and the second S/D region.
US11227917B1

A device includes a semiconductor substrate, a source feature and a drain feature over the semiconductor substrate, a stack of semiconductor layers interposed between the source feature and the drain feature, a gate portion, and an inner spacer of a dielectric material. The gate portion is between two vertically adjacent layers of the stack of semiconductor layers and between the source feature and the drain feature. Moreover, the gate portion has a first sidewall surface and a second sidewall surface opposing the first sidewall surface. The inner spacer is on the first sidewall surface and between the gate portion and the drain feature. The second sidewall surface is in direct contact with the source feature.
US11227910B2

A display panel, a display screen, and a terminal device are provided. The display panel includes: a substrate; and a plurality of first electrodes disposed on the substrate, the plurality of the first electrodes extending in parallel with each other in a extending direction, and two adjacent first electrodes having an interval therebetween, a width of the first electrode changes continuously or intermittently in the extending direction of the first electrodes, two edges of the first electrode in the extending direction thereof are wavy lines, crests and troughs of the wavy line are both curves, and a radius of curvature of the curve at the crest is different from a radius of curvature of the curve at the trough.
US11227899B2

A display device is disclosed. The display device may include a first pixel and a second pixel. The first pixel may include a first light emitter and a first color converter overlapping the first light emitter. The second pixel may immediate neighbor the first pixel, may include a second light emitter and a second color converter overlapping the second light emitter. When a distance between the first light emitter and the second light emitter is x and a distance between the first light emitter and the first color converter is y, the following equation is satisfied: y=x×tan θ1 wherein θ1 is (90−θ), and the θ is an included angle between a line perpendicular to a light emitting face of the first light emitter at a point of the light emitting face and a line connecting the point of the light emitting face to any point away from the line perpendicular to the light emitting face, the θ has a range of an angle corresponding a luminance ratio value in the range of 1% with respect to the light emitted from the first light emitter to an angle corresponding a luminance ratio value in the range of 15% with respect to the light emitted from the first light emitter.
US11227896B2

A nonvolatile memory device includes a gate line extending in a first horizontal direction; a gate electrode of a pillar shape extending in a vertical direction from the gate line; a plurality of bit lines and a plurality of source lines extending in parallel in a second horizontal direction perpendicular to the first horizontal direction, the plurality of bit lines and the plurality of source lines being stacked in the vertical direction; and a plurality of cell transistors vertically stacked to surround an outer side surface of the gate electrode between the plurality of bit lines and the plurality of source lines. Each of the cell transistors includes a gate dielectric layer which surrounds the outer side surface of the gate electrode and a channel layer which surrounds an outer side surface of the gate dielectric layer.
US11227895B2

A light detection and ranging (LIDAR) system is provided that includes an optical a scanning mirror to steer a laser beam emitted from the tip of an optical fiber to scan a scene, and collect light incident upon any objects in the scene that is returned to the fiber tip. The LIDAR system further includes a re-imaging lens located between the optical fiber and scanning mirror, and an optic located between the scanning mirror and the scene. The re-imaging lens focuses the laser beam emitted from the optical fiber on or close to the first scanning mirror's center of rotation and thereby re-image the fiber tip at or close to the center of rotation, from which the laser beam is reflected as a divergent laser beam. And the optic is configured to collimate or focus the divergent laser beam from the first scanning mirror that is launched toward the scene.
US11227894B2

One illustrative device includes an array of memory cells including a first row of memory cells and a second row of memory cells adjacent the first row, a first gate structure extending along the first row, a second gate structure extending along the second row, a first wordline positioned in a first layer above the array and contacting the first gate structure, and a second wordline positioned in a second layer above the first layer and contacting the second gate structure, wherein the second wordline vertically overlaps the first wordline.
US11227889B2

The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes an image sensing element disposed within a semiconductor substrate. One or more isolation structures are arranged within one or more trenches disposed along a first surface of the semiconductor substrate. The one or more isolation structures are separated from opposing sides of the image sensing element by non-zero distances. The one or more trenches are defined by sidewalls and a horizontally extending surface of the semiconductor substrate. A doped region is laterally arranged between the sidewalls of the semiconductor substrate defining the one or more trenches and is vertically arranged between the image sensing element and the first surface of the semiconductor substrate.
US11227888B2

Solid-state imaging devices, methods to produce the solid-state imaging devices, and electronic apparatuses including the solid-state imaging devices, where the solid-state imaging devices include a semiconductor substrate including a light receiving surface; a plurality of photoelectric conversion parts provided within the semiconductor substrate; and a plurality of reflection portions provided in the semiconductor substrate on a side of the photoelectric conversion parts that is opposite from the light receiving surface; where each of the reflection portions includes a reflection plate and a plurality of metal wirings, and where the plurality of metal wirings are disposed in a same layer of the semiconductor substrate as the reflection plate.
US11227884B2

The present technique relates to a solid-state imaging device and an imaging apparatus that enable provision of a solid-state imaging device having superior color separation and high sensitivity.
US11227880B2

A method of manufacturing a display apparatus includes forming a first conductive layer on a base substrate including a panel area and a margin area disposed next to the panel area, the margin area including a dummy pattern area, forming a photoresist layer on the first conductive layer, forming a photoresist pattern by exposing and developing the photoresist layer, forming a first conductive pattern by etching the first conductive layer using the photoresist pattern, and removing the photoresist pattern. The forming the first conductive pattern includes forming a first pixel circuit pattern in the panel area, and forming a dummy pattern in the dummy pattern area of the margin area. An opening ratio of a portion where the dummy pattern is not formed with respect to the dummy pattern area is about 30% or more.
US11227877B2

An array substrate includes a display region and a non-display region located outside the display region. The non-display region includes a flexible underlay and an inorganic film layer. A surface of the flexible underlay is provided with a number of slots thereon. The plurality of slots including a pair of adjacent slots. A region positioned between the adjacent slots on the flexible underlay is a trace region. The inorganic film layer includes a first inorganic film layer formed in the trace region and a second inorganic film layer formed on a bottom wall of the slots. The first inorganic film layer and the second inorganic film layer are divided by sidewalls of the slots. A peripheral metal trace is formed on the surface of the first inorganic film layer.
US11227875B2

A display device includes a pixel connected to a scan line, and a data line crossing the scan line, wherein the pixel includes a light-emitting element, a driving transistor configured to control a driving current supplied to the light-emitting element according to a data voltage applied from the data line, and a first switching transistor configured to apply the data voltage of the data line to the driving transistor according to a scan signal that is applied to the scan line. The driving transistor includes a first active layer including an oxide semiconductor, and a first oxide layer disposed on the first active layer and including an oxide semiconductor. The first switching transistor includes a second active layer including an oxide semiconductor, and the first oxide layer is not disposed on the second active layer.
US11227872B2

In some embodiments, the present disclosure relates to an integrated chip including one or more lower interconnect layers arranged within one or more stacked inter-layer dielectric layers over a substrate. A bottom electrode is disposed over the one or more interconnect layers, and a top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts a first surface of the bottom electrode and a second surface of the top electrode. The ferroelectric layer includes a protrusion that extends past outer surfaces of the top electrode and the bottom electrode along a first direction that is perpendicular to a second direction that is normal to the first surface. The protrusion is confined between lines that extend along the first and second surface.
US11227867B2

A method for manufacturing a semiconductor device includes providing a substrate structure including a substrate, an interlayer dielectric layer, multiple trenches in the interlayer dielectric layer including first, second, third trenches for forming respective gate structures of first, second, and third transistors, forming an interface layer on the bottom of the trenches; forming a high-k dielectric layer on the interface layer and sidewalls of the trenches; forming a first PMOS work function adjustment layer on the high-k dielectric layer of the third trench; forming a second PMOS work function adjustment layer in the trenches after forming the first PMOS work function adjustment layer; forming an NMOS work function layer in the trenches after forming the second PMOS work function adjustment layer; and forming a barrier layer in the trenches after forming the NMOS work function layer and a metal gate layer on the barrier layer.
US11227863B2

An embodiment includes an apparatus comprising: first and second semiconductor fins that are parallel to each other; a first gate, on the first fin, including a first gate portion between the first and second fins; a second gate, on the second fin, including a second gate portion between the first and second fins; a first oxide layer extending along a first face of the first gate portion, a second oxide layer extending along a second face of the second gate portion, and a third oxide layer connecting the first and second oxide layers to each other; and an insulation material between the first and second gate portions; wherein the first, second, and third oxide layers each include an oxide material and the insulation material does not include the oxide material. Other embodiments are described herein.
US11227859B2

A device package and a method of forming the device package are described. The device package includes one or more dies disposed on a first substrate. The device packages further includes one or more interconnects vertically disposed on the first substrate, and a mold layer disposed over and around the first die, the one or more interconnects, and the first substrate. The device package has a second die disposed on a second substrate, wherein the first substrate is electrically coupled to the second substrate with the one or more interconnects, and wherein the one or more interconnects are directly disposed on at least one of a top surface of the first substrate and a bottom surface of the second substrate without an adhesive layer. The device package may include one or more interconnects having one or more different thicknesses or heights at different locations on the first substrate.
US11227856B2

A multi-chip package power module according to the present disclosure, comprising: multiple chips, including a first chip and a second chip that are arranged adjacently; a first conductive member, at least partially arranged between the first chip and the second chip, and a second conductive member, at least partially arranged between the first chip and the second chip, where the first conductive member is electrically connected to a power pin of the first chip, the second conductive member is electrically connected to a power pin of the second chip, and the multiple chips, the first conductive member and the second conductive member are all embedded in an insulating package material. For the multi-chip package power module according to the present disclosure, the power output current of the chip can be directly led out from two opposite sides through the conductive member to obtain a symmetrical path.
US11227852B2

An integrated circuit and methods for packaging the integrated circuit. In one example, a method for packaging an integrated circuit includes connecting input/output pads of a first integrated circuit die to terminals of a lead frame via palladium coated copper wires. An oxygen plasma is applied to the first integrated circuit die and the palladium coated copper wires. The first integrated circuit die and the palladium coated copper wires are encapsulated in a mold compound after application of the oxygen plasma.
US11227851B2

A control device and a circuit board are provided. The control device can cooperate with the circuit board, and includes a ball grid array. The ball grid array includes a plurality of power balls and a plurality of ground balls, which are jointly arranged in a ball region. The power balls and the ground balls are respectively divided into a plurality of power ball groups and a plurality of ground ball groups. One of the ground ball groups includes two ground balls and is adjacent to a power ball group. A ball pitch between the two ground balls is greater than that between one of the power balls and one of the ground balls adjacent to each other. The circuit board includes a contact pad array corresponding to the ball grid array of the control device so that the control device can be disposed on the circuit board.
US11227847B2

Embodiments herein describe providing a decoupling capacitor on a first wafer (or substrate) that is then bonded to a second wafer to form an integrated decoupling capacitor. Using wafer bonding means that the decoupling capacitor can be added to the second wafer without having to take up space in the second wafer. In one embodiment, after bonding the first and second wafers, one or more vias are formed through the second wafer to establish an electrical connection between the decoupling capacitor and bond pads on a first surface of the second wafer. An electrical IC can then be flip chipped bonded to the first surface. As part of coupling the decoupling capacitor to the electrical IC, the decoupling capacitor is connected between the rails of a power source (e.g., VDD and VSS) that provides power to the electrical IC.
US11227836B2

Various embodiments of the present application are directed towards a pad with high strength and bondability. In some embodiments, an integrated chip comprises a substrate, an interconnect structure, a pad, and a conductive structure. The interconnect structure adjoins the substrate and comprises wires and vias. The wires and the vias are stacked between the pad and the substrate. The conductive structure (e.g., a wire bond) extends through the substrate to the pad. By arranging the wires and the vias between the pad and the substrate, the pad may be inset into a passivation layer of the interconnect structure and the passivation layer may absorb stress on the pad. Further, the pad may contact the wires and the vias at a top wire level. A thickness of the top wire level may exceed a thickness of other wire levels, whereby the top wire level may be more tolerant to stress.
US11227833B2

A method for forming an interconnect structure is provided. The method for forming the interconnect structure includes forming a first dielectric layer over a substrate, forming a first conductive feature through the first dielectric layer, forming a first blocking layer on the first conductive feature, forming a first etching stop layer over the first dielectric layer and exposing the first blocking layer, removing at least a portion of the first blocking layer, forming a first metal bulk layer over the first etching stop layer and the first conductive feature, and etching the first metal bulk layer to form a second conductive feature electrically connected to the first conductive feature.
US11227830B2

Methods to form vertically conducting and laterally conducting low-cost resistor structures utilizing dual-resistivity conductive materials are provided. The dual-resistivity conductive materials are deposited in openings in a dielectric layer using a single deposition process step. A high-resistivity β-phase of tungsten is stabilized by pre-treating portions of the dielectric material with impurities. The portions of the dielectric material in which impurities are incorporated encompass regions laterally adjacent to where high-resistivity β-W is desired. During a subsequent tungsten deposition step the impurities may out-diffuse and get incorporated in the tungsten, thereby stabilizing the metal in the high-resistivity β-W phase. The β-W converts to a low-resistivity α-phase of tungsten in the regions not pre-treated with impurities.
US11227828B2

A semiconductor device includes a semiconductor substrate, a gate structure, a capacitor structure, and a conductive contact. The semiconductor substrate has at least one semiconductor fin thereon. The gate structure is disposed across the semiconductor fin. The capacitor structure is disposed on the gate structure. The capacitor structure includes a ferroelectric layer and a first metal layer disposed on the ferroelectric layer. The capacitor structure is sandwiched between the conductive contact and the gate structure.
US11227822B2

A semiconductor device includes a first lead having a base extending in a first direction, and an IC on the base. The semiconductor device also includes a second lead, a third lead and fourth leads. The second lead includes a first belt-like section on one side of the base in the first direction, extending in a second direction, and paired second belt-like sections extending in the first direction from the first belt-like section. The third lead is on one side in the first direction. The fourth leads are on one side of the third lead in the first direction. First switching elements are bonded to the third lead. Second switching elements are respectively bonded to the fourth leads. The base overlaps with the first belt-like section 121 when viewed in the first direction. At least a part of the base is between the second belt-like sections.
US11227819B2

This disclosure relates to a discrete semiconductor device and associated method of manufacture, the discrete semiconductor device includes: a high voltage depletion mode device die; and a low voltage enhancement mode device die connected in cascode configuration with the high voltage depletion mode device die. The high voltage depletion mode device includes a gate, source and drain terminals arranged on a first surface thereof and the gate source and drain terminals are inverted with respect to the low voltage enhancement mode device die and the low voltage device is arranged adjacent to the high voltage device.
US11227813B2

An electronic apparatus includes: a first metal layer; an electronic component that is provided on the first metal layer; a second metal layer that is provided on the first metal layer and on the electronic component; and an insulating resin that fills a space between the first metal layer and the second metal layer so as to cover the electronic component. The second metal layer includes: a sheet-like electrode pad portion; and a connection portion that is disposed along a peripheral edge of the electrode pad portion, and that protrudes from the electrode pad portion toward the first metal layer so as to electrically connect the second metal layer to the first metal layer.
US11227810B2

An electronic module has a rear surface-exposed conductor 10, 20, 30 having a rear surface-exposed part 12, 22, 32 whose rear surface is exposed; an electronic element 15, 25 provided on a front surface of the rear surface-exposed conductor 10, 20, 30; and a connector 60 configure to connect the rear surface-exposed conductor 10, 20, 30 and the electronic element 15, 25 or two rear surface-exposed conductors 10, 20, 30 each other. A groove 150 is provided on the front surface of the rear surface-exposed conductor 10, 20, 30. The sealing part 90 is provided with a press hole or a press impression 110, 120, 130 used to press the rear surface-exposed conductor 10, 20, 30. In an in-plane direction, a center portion of the press hole or the press impression 110, 120, 130 is provided on the side opposite to the connector 60 or the electronic element 15, 25 with respect to the groove 150.
US11227804B2

A collector layer, a base layer, an emitter layer, and an emitter mesa layer are placed above a substrate in this order. A base electrode and an emitter electrode are further placed above the substrate. The emitter mesa layer has a long shape in a first direction in plan view. The base electrode includes a base electrode pad portion spaced from the emitter mesa layer in the first direction. An emitter wiring line and a base wiring line are placed on the emitter electrode and the base electrode, respectively. The emitter wiring line is connected to the emitter electrode via an emitter contact hole. In the first direction, the spacing between the edges of the emitter mesa layer and the emitter contact hole on the side of the base wiring line is smaller than that between the emitter mesa layer and the base wiring line.
US11227794B2

A multi-layer interconnect structure with a self-aligning barrier structure and a method for fabricating the same is disclosed. For example, the method includes forming a via through an interlayer dielectric (ILD) layer, an etch stop layer (ESL), and a contact structure, pre-cleaning the via with a metal halide, forming a barrier structure on the contact structure in-situ during the pre-cleaning of the via with the metal halide, and depositing a second metal in the via on top of the barrier structure.
US11227779B2

The invention provides an apparatus, for processing a semiconductor device, comprising a first tool which comprises a pressure application component, a guide, and a spacer moveable in the guide. A gap is defined between the spacer and the guide and is operable to allow the spacer to tilt in relation to the guide. The apparatus also comprises a second tool for holding the semiconductor device, wherein the first and second tools are moveable relative to each other between an uncoupled state and a coupled state. The spacer comprises a first portion proximate the pressure application component, wherein in the coupled state, the pressure application component is operable to apply a force as a first pressure to the first portion. The spacer also comprises a second portion distal from the pressure application component, wherein in the coupled state, the second portion is proximate the semiconductor device and is operable to transmit the force from the pressure application component to the semiconductor device as a second pressure.
US11227778B2

A wafer cleaning apparatus includes a spin base, a first arm, and a second arm. The spin base is configured to support a wafer. The first arm is disposed above the spin base and configured to supply a chemical solution. The second arm is movably positioned above the spin base, and the second arm is configured to supply a first cleaning solution above the spin base when the first arm abnormally stops supplying the chemical solution.
US11227769B2

A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming an interlayer dielectric (ILD) layer around the gate structure; performing a replacement metal gate (RMG) process to transform the gate structure into a metal gate; forming an inter-metal dielectric (IMD) layer on the metal gate; forming a metal interconnection in the IMD layer; and performing a high pressure anneal (HPA) process for improving work function variation of the metal gate.
US11227768B2

The present disclosure is directed to a methodology for embedding a deterministic number of dopant atoms in a surface portion of a group IV semiconductor lattice. The methodology comprises the steps of: forming one or more lithographic sites on the surface portion; dosing, at a temperature below 100 K, the surface portion using a gas with molecules comprising the dopant atom and hydrogen atoms in a manner such that, a portion of the molecules bonds to the surface portion; and incorporating one or more dopant atoms in a respective lithographic site by transferring an amount of energy to the dopant atoms. The number of dopant atoms incorporated in a lithographic site is deterministic and related to the size of the lithographic site.
US11227767B2

A substrate is provided with a patterned layer over a stack of one or more processing layers. The processing layers include at least one patterned layer and one etch target layer. CD trimming between the CD of the patterned layer and the CD of the etch target layer may be achieved after the pattern is transferred to the etch target layer. After the etch target layer is patterned, a plasma free gas phase etch process may be used to trim the CD of the etch target layer to finely tune the CD. In an alternate embodiment, plasma etch trim processes may be used in combination with the gas phase etch process. In such an embodiment, partial CD trimming may be achieved via the plasma etching of the various process layers and then additional CD trimming may be achieved by subjecting the etch target layer to the plasma free gas phase etch after the desired pattern has been formed in the etch target layer.
US11227764B2

A laser irradiation method includes a first scanning wherein a laser beam is scanned in a first region having a width in the X direction and a length in the Y direction by moving a laser irradiation area on the surface of the substrate along the Y direction using a spot laser beam, and a second scanning wherein laser beam is scanned in a second region having a width in the X direction and a length in the Y direction by moving a laser irradiation area on the surface of the substrate along the Y direction using the spot laser beam. A center of the second region is spaced apart from a center of the first region in the X direction.
US11227757B2

A device for performing field asymmetric waveform ion mobility spectrometry, “FAIMS,” including first and second segmented planar electrodes, each electrode including three or more segments and extending in a direction parallel to an analytical axis of the device, wherein the first and second segmented electrodes are separated from each other to provide an analytical gap therebetween; and propelling means for propelling ions through the analytical gap in a direction parallel to the analytical axis. The device is configured to operate in a FAIMS mode in which a power supply applies voltage waveforms to the segments to produce an asymmetric time dependent electric field in the analytical gap for FAIMS analysis of ions propelled through the analytical gap. The asymmetric time dependent electric field has substantially straight contours of equal field strength in a plane perpendicular to the analytical axis to focus ions having different differential mobilities towards different spatial domains.
US11227755B2

An autosampler for obtaining mass spectra from a plurality of fluid samples, in particular gaseous samples including a plurality of containers including sample sources providing the samples, wherein each one of the containers provides a docking port for being connected with a connector for enabling access to an inside of the respective container via the connector in order to obtain the respective sample from the respective container via said connector. The autosampler further includes an ionisation source for ionising at least a part of the samples, and a mass analyser for obtaining the mass spectra from the ions. The ionisation source is moveable within the autosampler sequentially to each of the containers for connecting the connector to the docking port of the respective container for collecting the sample from the respective container for ionising at least a part of the sample and obtaining the mass spectra from the ions.
US11227754B2

A low power mass spectrometer assembly includes at least an ionization component, an electrostatic analyzer, a lens assembly, a magnet assembly and at least one detector located in a same plane as the entrance to the magnet assembly for detecting the deflected sample ions and/or fragments of sample ions, including ions or ion fragments indicative of the Vitamin D metabolite within the sample.
US11227748B2

The present invention improves the in-plane uniformity of films formed via a plasma treatment. It is provided a plasma treatment device comprising: an electrode plate arranged in a reaction vessel; a counter electrode arranged parallel so as to opposite to the electrode plate in the reaction vessel; a transmission plate to supply frequency power to the electrode plate from outside of the reaction vessel, the transmission plate being connected from non-opposite side not opposing to the counter electrode of the electrode plate; and an insulator with a container shape, the insulator being arranged in the reaction vessel and storing the electrode plate therein; wherein the non-opposite side of the electrode plate closely contacts to an inner bottom surface of the insulator with the container shape, wherein a side surface of the electrode plate closely contacts to an inner side surface of the insulator with the container shape, and wherein a hole edge portion of the insulator with the container shape is formed so as to protrude toward a counter electrode side.
US11227745B2

Some embodiments include a plasma sheath control system that includes an RF power supply producing an A sinusoidal waveform with a frequency greater than 20 kHz and a peak voltage greater than 1 kV and a plasma chamber electrically coupled with the RF power supply, the plasma chamber having a plurality of ions that are accelerated into a surface disposed with energies greater than about 1 kV, and the plasma chamber produces a plasma sheath within the plasma chamber from the sinusoidal waveform. The plasma sheath control system includes a blocking diode electrically connected between the RF power supply and the plasma chamber and a capacitive discharge circuit electrically coupled with the RF power supply, the plasma chamber, and the blocking diode; the capacitive discharge circuit discharges capacitive charges within the plasma chamber with a peak voltage greater than 1 kV and a discharge time that less than 250 nanoseconds.
US11227743B2

A scanning electron microscope having a spectrometer with a sensor having a plurality of pixels, wherein the spectrometer directs different wavelengths of collected light onto different pixels. An optical model is formed and an error function is minimized to find values for the model, such that wavelength detection may be corrected using the model. The model can correct for errors generated by effects such as the motion of the electron beam over the specimen, aberrations introduced by optical elements, and imperfections of the optical elements. A correction function may also be employed to account for effects not captured by the optical model.
US11227742B1

An electron microscopic specimen includes a carrier for an electron microscope, an object, and a protective layer. The object is adapted for microscopic examination using the electron microscope, and is disposed on a surface of the carrier. The protective layer is made from amorphous aluminium oxide, and is disposed over the object, such that the object is enclosed between the carrier and the protective layer. The protective layer has a thickness not greater than 5 nm. A method of making the electron microscopic specimen, and a method for microscopic examination of the specimen are also disclosed.
US11227733B2

A switch includes: a tank; a fixed contact and a reciprocally movable contact provided inside the tank; an opening/closing shaft that rotates to thereby move the movable contact; a jack base fixed to the outer side of the tank; a torsion bar that stores a force to rotate the opening/closing shaft so as to move the movable contact in a direction away from the fixed contact; and an opening/closing lever detachably attached to the opening/closing shaft. The jack base has a first penetrating portion formed therethrough and facing the opening/closing lever. The opening/closing lever has a second penetrating portion formed therethrough and facing the jack base. The switch further includes: a bolt inserted through the first penetrating portion and the second penetrating portion; and a nut attached to a portion of the bolt, the portion of the bolt extending out of the first penetrating portion and the second penetrating portion.
US11227730B2

A modular structure for safety switches for controlling access for machines and industrial plants comprises a casing (2) housing switching means for controlling one or more circuits of the machine or plant, drive means adapted to interact with the switching means upon the opening/closing of the access, an auxiliary module (3-3v) housing at least one control (4i-4v) adapted to be manually operated to operate on the switching means and/or the drive means and comprising a box hollow body (5) having at least one opening (6) for inserting the control (4i-4v) provided with first means for removably connecting the control (4i-4v), the latter being selected within a series of controls (4i-4v) having functions different from each other and each provided with a fastening rod (7i-7v) adapted to be inserted in the opening (6) of the box body (5) and provided with second connecting means complementary to the first connecting means.
US11227723B2

A multilayer ceramic capacitor has a body including first and second internal electrodes laminated with a dielectric layer interposed therebetween, and having fifth and sixth surfaces opposing each other, third and fourth surfaces opposing each other, and first and second surfaces opposing each other. A first through-electrode penetrates through the body to be connected to the first internal electrode, and a second through-electrode penetrates through the body to be connected to the second internal electrode. First and second external electrodes are disposed on the first and second surfaces, respectively, and third and fourth external electrodes are disposed on the first and second surfaces, respectively, to be spaced apart from the first and second external electrodes. Each of the first to fourth external electrodes is a respective sintered electrode including nickel.
US11227718B2

A method of manufacturing a multilayer ceramic capacitor includes: forming a multilayer body by alternately stacking a green sheet and a conductive paste for forming an internal electrode layer, the green sheet being mainly composed of a ceramic material having a perovskite structure that includes Ca and Zr and is expressed by a general expression ABO3 and containing an alkali metal, the conductive paste being mainly composed of Cu, containing a ceramic co-material and no alkali metal; and baking the multilayer body to obtain a ceramic multilayer body.
US11227716B2

An inductor includes a support member; a coil including a plurality of coil patterns disposed on one surface or the other surface of the support member, an insulating layer surrounding the coil, and an encapsulant encapsulating the support member and the coil patterns. At least portions of the insulating layer may be disposed to be recessed from the one surface or the other surface of the support member toward a center of the support member.
US11227712B2

The present application relates to an apparatus which comprises a wireless power transfer (WPT) system. This system comprises features which allow it to transfer more power wirelessly at extended distances than other systems operating in the same frequency range. The system possesses heat dissipation features; these features allow it to operate effectively in elevated-temperature environments, and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also might include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system can also comprise adaptations to reduce electromagnetic interference (EMI), and can comprise specially shaped components with magnetic/ferrimagnetic properties that enhance performance. Other potential features include power conditioning by combining, within one circuit or one board, multiple elements that protect against excessive current, over-voltage, and/or reverse voltage. Other features might include integration of an antenna and a battery within one module.
US11227707B2

A tension relief for supply lines and a block-like clamping part therefor, which has a lateral surface designed as a clamping surface. The clamping surface of the clamping part is formed at least in one clamping portion by an elastic wall, which is delimited on the side facing away from the clamping surface by a cavity structure, which is formed by additional walls. The clamping part can be variedly used without modification on certain line diameters, in particular in a tension relief of a cable carrier or also in a connector housing.
US11227693B2

Application of axial seed magnetic fields in the range 20-100 T that compress to greater than 10,000 T (100 MG) under typical NIF implosion conditions may significantly relax the conditions required for ignition and propagating burn in NIF ignition targets that are degraded by hydrodynamic instabilities. Such magnetic fields can: (a) permit the recovery of ignition, or at least significant alpha particle heating, in submarginal NIF targets that would otherwise fail because of adverse hydrodynamic instability growth, (b) permit the attainment of ignition in conventional cryogenic layered solid-DT targets redesigned to operate under reduced drive conditions, (c) permit the attainment of volumetric ignition in simpler, room-temperature single-shell DT gas capsules, and (d) ameliorate adverse hohlraum plasma conditions during laser drive and capsule compression. In general, an applied magnetic field should always improve the ignition condition for any NIF ignition target design.
US11227690B1

A method comprising: receiving, for each of a plurality of subjects, each having a specified type of cardiovascular or cardiometabolic disease and receiving at least one specified therapy from a set of therapies for treating cardiovascular and cardiometabolic diseases, a first score representing a first genetic predisposition in said subject to respond to one or more of said set of therapies; at a training stage, training a machine learning model on a training set comprising: (i) all of said first scores, and labels associated with a response in each of said subjects to said at least one specified therapy; and at an inference stage, apply said trained machine learning model to a target said first score received with respect to a target subject, to predict a response in said target subject to at least one of said therapies in said set.
US11227689B2

Embodiments of the present disclosure pertain to verifying medical diagnoses. In one embodiment, a first classification unit is configured to process manually generated medical input data. The first classifier generates one or more first probabilities corresponding to one or more medical diagnoses. A second classification unit is configured to process machine generated medical input data associated with the manually generated medical data. The second classifier generates one or more second probabilities corresponding to the one or more medical diagnoses. A verification unit is configured to verify the manually generated input data by combining the first and second probabilities.
US11227684B2

Systems and methods are disclosed for determining at least one geographic region of a plurality of geographic regions, at least one data variable, and/or at least one health variable, estimating a current prevalence of a data variable in a geographic region of the plurality of geographic regions, determining a trend in a relationship between the data variable and the geographic region at a current time, determining a second trend in the relationship between the data variable and the geographic region at at least one prior point in time, determining if the trend in the relationship is irregular within a predetermined threshold with respect to the second trend from the at least one prior point in time, and, upon determining that the trend in the relationship is irregular within a predetermined threshold, generating an alert.
US11227677B2

The concept disclosed is referred is a temporary identification device, or, “TID.” The TID comprises essentially, different embodiments of a reproducible layer, the reproducible layer being a pictographic rendering of data, information, colors, and visualization codes pertaining to a specific subject, the subject being animate or inanimate. The medium of the reproducible layer may be, but is not limited to, paper, fabric, synthetic material, or an inked imprint/impression of the data and information integral to the TID. The medium of the reproducible layer is encompassed within, or incorporated onto the TID. In some embodiments, the information embodied within or upon the TID may be transferred directly onto the skin or surface of a subject.
US11227674B2

A home automation (HA) system may include addressable HA devices and a user interface device configured to permit user social networking and generate user social networking data based thereon. The HA system may also include a controller and a memory coupled thereto and configured to store measured user health data and determine user physical activity data based upon the addressable HA devices. The controller and the memory may be configured to generate a user health score based upon the user social networking data, user health data, and user physical activity data and communicate the user health score via the cloud.
US11227673B2

Apparatus and methods for deriving a dietary plan. In one embodiment, the method comprises enabling a user to enter a long-term dietary goal at a health tracking device; accessing user profile information relating to the user; generating at least one value representative of a short-term dietary goal for the user based at least in part on the long-term dietary goal and the user profile information; dividing the at least one value of the short-term dietary goal among a plurality of dietary portions; and enabling the user to adjust the relative amount of the at least one value apportioned to each of the plurality of dietary portions.
US11227668B2

Methods and systems for the analysis of genotyping data are presented. According to various embodiments of methods and systems, an angle configuration search may be performed. In various embodiments, an exhaustive search over the entirety of an angle configuration space may be performed to provide a fit to a plurality of angles determined for a plurality of points in a data set generated from a plurality of biological samples. For various embodiments, the angle configuration space may be defined to ensure that a global fit may be determined. According to various methods and systems, a data base of possible angle configurations may be searched, in which each angle configuration may include three angles. According to various methods and systems, a data base of possible angle configurations may include for each angle configuration a probability that the angle configuration may occur.
US11227660B2

A memory device includes a cell array and a page buffer circuit. The cell array includes a first to fourth cell strings respectively connected to a first to fourth bit lines. The page buffer circuit is configured to apply an erase voltage to the first and third bit lines based on a first control signal during an erase operation for memory cells of the first to fourth cell strings. The page buffer circuit is configured to place the second and fourth bit lines in a floating state based on a second control signal during the erase operation.
US11227659B2

A storage device includes a nonvolatile memory device and a controller. The controller provides the nonvolatile memory device with first data, an address, and a program start command and provides the nonvolatile memory device with second data after the program start command is provided the nonvolatile memory device. The nonvolatile memory device is configured to initiate a program operation, which is based on the first data, in response to the program start command and to continue to perform, based on the first data and the second data, the program operation when the second data is provided to the nonvolatile memory device. The nonvolatile memory device is configured to perform a program and a verification read of a first program loop based on the first data, the verification read of the first program loop being performed using one verification voltage.
US11227652B2

Provided herein is a memory device and a method of operating the same. The memory device may include a CAM block configured to store CAM data required for various operations, a page buffer group configured to store the CAM data read from the CAM block through a CAM read operation, an extra register configured to store extra data generated by performing an operation on the CAM data, an operation logic configured to perform an operation of checking a defect in the extra register, registers configured to sequentially store operation data generated through the defect check operation, a fixed register configured to store fixed data obtained through an operation performed to check an error in the CAM data, and core circuits configured to perform the CAM read operation and transmit the operation data and the CAM data to the extra register, the registers, and the fixed register.
US11227649B2

Embodiments of the disclosure are drawn to apparatuses and methods for staggering the timing of targeted refresh operations. A memory device may include a number of memory banks, at least some of which may be simultaneously entered into a refresh mode. A given memory bank may perform an auto-refresh operation or a targeted refresh operation, which may draw less power than the auto-refresh operation. The timing of the targeted refresh operations may be staggered between the refreshing memory banks, such that a portion of the refreshing memory banks are performing a targeted refresh operation simultaneously with a portion of the refreshing memory banks performing an auto-refresh operation.
US11227647B2

A semiconductor device is provided. The semiconductor device includes: a processor core which processes program data; a first memory mounted on the same semiconductor chip as the processor core; a second memory including an MRAM cell having a first MTJ (Magnetic Tunnel Junction) structure; a third memory including an MRAM cell having a second MTJ structure different from the first MTJ structure, wherein the processor core selectively stores the program data in one of the first memory, the second memory and the third memory, on the basis of an attribute of the program data.
US11227645B2

According to an example embodiment an MTJ unit is provided. The MTJ unit includes: a first MTJ comprising a first free layer, a first tunnel barrier layer and a first reference layer. The first MTJ is switchable between a parallel state and an anti-parallel state through spin-torque transfer (STT). The MTJ unit comprises a second MTJ arranged above the first MTJ and comprising, a second reference layer, a second tunnel barrier layer and a second free layer. The second MTJ is switchable between a parallel state and an anti-parallel state through STT. The MTJ unit comprises a pinning layer arranged between the first reference layer and the second reference layer and configured to fix a magnetization direction of the first reference layer and the second reference layer.
US11227644B2

A spin orbit torque (SOT) memory device includes a MTJ device on a SOT electrode, where a first portion of the SOT electrode extends beyond a sidewall of the MTJ by a first length that is no greater than a height of the MTJ, and where a second portion of the first electrode extends from the sidewall and under the MTJ by a second length that is no greater than a width of the MTJ. The MTJ device includes a free magnet, a fixed magnet and a tunnel barrier between the free magnet and the fixed magnet.
US11227638B2

The present invention discloses a method and system for cutting video using video content. The method comprises: acquiring recorded video produced by user's recording operation; extracting features of recorded audio in the recorded video and judging whether the recorded audio is damaged; and if not, extracting human voice data from the recorded audio which has been filtered out background sound, intercepting video segment corresponding to effective human voice, and displaying the video segment as clip video; and if yes, extracting image feature data of person's mouth shape and human movements in the recorded video after image processing, fitting the image feature data and the human voice data which has been filtered out background sound, and displaying the video segment with the highest fitting degree as clip video.
US11227637B1

A method for generation of a video montage file from a plurality of media files, for presentation on a device including a display is disclosed. The method includes accessing feature information for an audio track, the feature information including a starting feature location and subsequent time slot information related to features of the audio track, generating a first video segment for a first time slot from a first media file; generating a second video segment for a second time slot from a second media file, creating a video montage file by adding the second video segment to the first video segment; and adding the audio track to the video montage file with the starting feature location in the audio track coinciding with a start of the first video segment. The features may be beats of the audio track and the starting feature may be the starting beat.
US11227625B2

A non-transitory computer-readable storage medium storing a program that causes a computer to execute a process, the process includes setting a plurality of speaker regions in different directions; calculating a phase difference in each of a plurality of different frequency bands on the basis of a plurality of sound signals acquired by the plurality of microphones; calculating a representative value of the number of phase differences belonging to each of a plurality of phase difference regions corresponding to each of the plurality of speaker regions on the basis of the calculated phase differences and the set plurality of speaker regions; comparing magnitudes of the calculated representative values; and determining, as a direction in which a speaker exists, a direction of a speaker region corresponding to a phase difference region where the compared representative value is large.
US11227610B1

This disclosure describes computer-based techniques for administering a spoken patterned passphrase. A passphrase processing unit running on an administrator computer generates passphrase data for a secure system using acoustic data and video data representing a spoken phrase by a speaker. This passphrase includes a pattern of words or speech segments that are audible and words or speech segments that are inaudible. During authentication, a passphrase administration unit on the administrator computer receives acoustic and visual data of a spoken phrase by a person attempting to access the secure system and evaluates whether the spoken phrase includes the pattern of audible and inaudible words or speech segments associated with the account. In this way, the techniques discussed herein may enable the administrator computer to administer spoken passphrases with an additional degree of protection than a system that is limited to using linguistic or biometric content in passwords or passphrases.
US11227606B1

A compact, self-authenticating, and speaker-verifiable record of an audio communication involving one or more persons comprises a record, encoded on a non-transitory, computer-readable medium, that consists essentially of: a voiceprint for each person whose voice is encoded in the record; a plurality of transcription records, where each transcription record consists essentially of a computer-generated speech-to-text decoding of an utterance and voiceprint associating information that associates a speaker of the utterance with one of the voiceprints stored in the record; and self-authenticating information sufficient to determine whether any of the information encoded in the communication record has been altered.
US11227601B2

A computer-implement voice command authentication method is provided. The method includes obtaining a sound signal stream; calculating a Signal-to-Noise Ratio (SNR) value of the sound signal stream; converting the sound signal stream into a Mel-Frequency Cepstral Coefficients (MFCC) stream; calculating a Dynamic Time Warping (DTW) distance corresponding to the MFCC stream according to the MFCC stream and one of a plurality of sample streams generated by the Gaussian Mixture Model with Universal Background Model (GMM-UBM); calculating, according to the MFCC stream and the sample streams, a Log-likelihood ratio value corresponding to the MFCC stream as a GMM-UBM score; determining whether the sound signal stream passes a voice command authentication according to the GMM-UBM score, the DTW distance and the SNR value; in response to determining that the sound signal stream passes the voice command authentication, determining that the sound signal stream is a voice stream spoken from a legal user.
US11227599B2

The present disclosure generally relates to voice-control for electronic devices. In some embodiments, the method includes, in response to detecting a plurality of utterances, associating the plurality of operations with a first stored operation set and detecting a second set of one or more inputs corresponding to a request to perform the operations associated with the first stored operation set; and performing the plurality of operations associated with the first stored operation set, in the respective order.
US11227598B2

A method for controlling a terminal by voice includes: querying, by a first terminal installed with a first client, a second client on a second terminal about scene information. The scene information includes information of at least one operable object in at least one display interface of the second client. The method also includes: displaying, on the first client, a prompt message about voice recording, the prompt message being a reference for a user to issue a voice operation; recording voice to obtain first audio data in response to an operation on a voice recording control of the first client; transmitting the scene information and the first audio data to a server, the server being a back-end server of the second client; and transmitting, after a control instruction is returned by the server, the control instruction to the second client, the control instruction carrying information of a to-be-performed operable object.
US11227594B2

A method, performed by a device, of providing a response to a user's voice input, includes capturing, via a camera of the device, an image including at least one object; activating a microphone of the device as the image is captured; receiving, via the microphone, the user's voice input for the object; determining the intention of the user with respect to the object by analyzing the received voice input; and providing a response regarding the at least one object based on the determined intention of the user.
US11227592B1

The present disclosure describes techniques for dynamically determining when information is to be output to a user, as well as what information is to be output to a user. A natural language processing system may receive, from a first device, first data representing information to be output at a first point during a skill session. The natural language processing system may also receive, from a second device, second data representing a natural language input. The natural language processing system may determine a skill component is to execute with respect to the natural language input. The natural language processing system may send, to the skill component, second data representing the natural language input. The natural language processing system may receive, from the skill component, an indication that an ongoing first skill session with the second device has reached the first point. After receiving the indication and based at least in part on system usage data associated with at least one user, the natural language processing system may determine third data representing a prompt corresponding to the information and send, to the second device, the third data for output.
US11227587B2

The present disclosure relates to a method, apparatus, and computer-readable storage medium that modulate an audio output of a microphone array in order to isolate speech of a talker in a vehicle. For instance, the present disclosure describes a method for modulating an audio output of a microphone array, comprising receiving two or more audio signals from two or more microphone capsules in the microphone array, each audio signal comprising a response to acoustic stimuli in an environment perceived by a respective microphone capsule of the microphone array, estimating an acoustic noise contribution level of the environment based on the received audio signals, estimating a voice contribution level of the environment based on the received audio signals, and determining, by processing circuitry, a direct voice contribution level of the environment based on the estimated acoustic noise contribution level of the environment and the estimated voice contribution level of the environment.
US11227586B2

Systems and methods improving the performance of statistical model-based single-channel speech enhancement systems using a deep neural network (DNN) are disclosed. Embodiments include a DNN-trained system to predict speech presence in the input signal, and this information can be used to create frameworks for tracking noise and conducting a priori signal to-noise ratio estimation. Example frameworks provide increased flexibility for various aspects of system design, such as gain estimation. Examples include training a DNN to detect speech in the presence of both noise and reverberation, enabling joint suppression of additive noise and reverberation. Example frameworks provide significant improvements in objective speech quality metrics relative to baseline systems.
US11227574B2

Acoustic mediums are disclosed herein. The acoustic mediums can include a plurality of layers. The layers of the acoustic mediums can include fibrous acoustic materials that are entangled throughout the layer. In certain instances, the layers of the acoustic medium can include first portion of acoustic materials disposed along a first plane, and a second portion of acoustic materials disposed along a second plane. Methods of fabricating multi-layer acoustic mediums are also disclosed.
US11227569B2

A foldable idiophone musical instrument may have two frames to support accidental tone bars on the first frame and natural tone bars on the second frame. Connecting members may attach to opposite ends of the frames. The connecting members may allow the frames to rotate from 0° to 180° from a horizontal position to collapse or fold the instrument. The connecting members may have a riser portion and a stop block portion. The riser portion may elevate the accidental tone bars above the natural tone bars. The stop block portion may prevent the frames from rotating to less than 0° from the horizontal when in a performance position.
US11227564B2

A processing method for an eye protection mode can be applied to a mobile terminal and include: acquiring a preset eye protection value, the preset eye protection value being a preset color temperature value of a white point; determining an eye protection coefficient of the preset eye protection value based on an application environment of the mobile terminal, and obtaining an optimized eye protection value based on the eye protection coefficient and the preset eye protection value, the optimized eye protection value being an eye protection color temperature value of the white point; determining eye protection color coordinates of the white point based on the optimized eye protection value and a daylight-blackbody locus curve; and determining RGB values of all color nodes based on the eye protection color coordinates of the white point through a color conversion matrix.
US11227555B2

A display device includes a display panel including a plurality of pixels, a data driver which provides data signals to the plurality of pixels, and a controller which controls the data driver. The controller writes frame data to a frame memory, reads the frame data in each of a plurality of frame periods, performs in a first frame period of the plurality of frame periods a still image detection operation that determines whether the frame data represent a still image, and does not performs the still image detection operation in a second frame period of the plurality of frame periods subsequent to the first frame period.
US11227551B2

The present disclosure provides a driving method and system for an OLED display panel. The driving method for the OLED display panel includes: controlling a gate line driving circuit of the display panel for each frame image to sequentially output a scanning signal to each gate line of the display panel; and when the gate line driving circuit of the display panel starts to output the scanning signal to one gate line, timing from a starting scanning time of the same scanning gate line; and after the scanning time of the current scanning gate line reaches a preset fixed scanning time, controlling the gate line driving circuit of the display panel to stop outputting the scanning signal to the current scanning gate line. Therefore, the present disclosure does not need to change the gamma curve when the refresh frequency is changed, and screen flicker will not occur, and a seamless dynamic refresh switching of the display panel is realized.
US11227550B2

An electronic panel, a display device, and a driving method are disclosed. In the electronic panel, each sub-pixel unit includes a light emitting unit, a pixel driving circuit for driving the light emitting unit to emit light, and a sensing circuit for sensing the pixel driving circuit; the gate driving circuit includes N+1 output terminals, and is configured to output gate scanning signals that turn on the N rows of the plurality of sub-pixel units row by row; the pixel driving circuits of the sub-pixel units in a j-th row are connected to a j-th output terminal of the gate driving circuit to receive the gate scanning signal as a scanning driving signal, and the sensing circuits of the sub-pixel units in the j-th row are connected to a (j+1)-th output terminal of the gate driving circuit to receive the gate scanning signal as a sensing driving signal.
US11227543B2

An electronic device capable of efficiently recognizing a handwritten character is provided. The electronic device includes a first circuit, a display portion, and a touch sensor. The first circuit includes a neural network. The display portion includes a flexible display. The touch sensor has the function of outputting an input handwritten character as image information to the first circuit. The first circuit has the function of analyzing the image information and converting the image information into character information, and a function of displaying an image including the character information on the display portion. The analysis is performed by inference through the use of the neural network.
US11227528B2

A method for setting a display white point comprises displaying images with a display including at least a first light source and a second light source. The first light source is configured to emit light having a first color and having a first temperature-dependent luminance change. The second light source is configured to emit light having a second color and having a second temperature-dependent luminance change. An internal display temperature is measured. Based on the internal display temperature being a first temperature, a first target white point is set to prioritize color accuracy. Based on the internal display temperature being a second temperature, greater than the first temperature, a second target white point is set to prioritize luminance output.
US11227527B2

A display panel and a display device are disclosed. The display panel includes a number of sub-pixels formed in a display region. Each sub-pixel includes a light-emitting unit and a drive switch. Each light-emitting unit includes a first electrode, and the drive switch is electrically connected to the first electrode. The light-emitting units in the multiple sub-pixels form a pixel array including a number of pixel columns, and light-emitting units in at least one pixel column of the pixel array correspond to sub-pixels of at least two different colors. The drive switches in the multiple sub-pixels form a drive array including a number of drive columns. The drive array includes two drive columns in which, the drive switches electrically connected to light-emitting units of a same color are connected to a same data line.
US11227519B2

The present technology provides an image projection apparatus including a pupil information acquisition section that acquires a pupil area or size, and an output control section that controls an output of image display light being collected around the pupil and irradiated on a retina on the basis of the pupil area or size acquired by the pupil information acquisition section. In addition, the present technology provides an image projection method including a step of acquiring pupil information to acquire a pupil area or size, a step of controlling an output of the image display light collected around a pupil and irradiated to a retina on the basis of a pupil area or size acquired in the step of acquiring pupil information, and a step of outputting image display light that irradiates the retina with the image display light at the output controlled in the step of controlling the output.
US11227505B2

Systems and methods for customizing an educational interactive multimedia presentation based on biometric sensor readings of a user. The interactive multimedia presentation may include one or more educational lessons that are presented to the user. A particular educational lesson may include content related to one or more skillsets the user is learning. By adapting the interactive multimedia presentation based on the user's biometric sensor readings, a customized learning experience may be created for the user.
US11227504B1

A group study system is described. The group study system allows for students to form study groups with other students in the same class or related classes by utilizing various technologies that make such a system possible. The system provides for an anonymous creation of the study sessions and maintains the anonymity until all students joining the study session participate in the study session. These sessions can be in person and virtual. Hybrid and virtual sessions are becoming more and more important with the increasing presence of online education. This system harnesses technology in an innovative way to do something that was not possible years ago by enabling students to gather in a learning environment with other students who previously did not know each other. Additionally, the system operates to allow crowd sourcing of data for the input of exam data, including date and time of the exam in order to automatically extend exam reminders.
US11227499B2

It is an object of the present invention to provide a driving assistance apparatus. The driving assistance apparatus according to the present invention includes: a subject vehicle information acquisition unit to acquire subject vehicle information; a non-subject vehicle information acquisition unit to acquire non-subject vehicle information; an object generation unit to generate, based on the subject vehicle information and the non-subject vehicle information, a travel location object indicating at least one of a location where the subject vehicle is currently to travel and a location where the subject vehicle is currently not to travel when the subject vehicle merges or changes lanes from a lane in which the subject vehicle travels to a lane in which the non-subject vehicle travels; and a display controller to perform control to display, in accordance with travel of the subject vehicle, the travel location object superimposed on scenery around the subject vehicle.
US11227497B2

A collision avoidance method and system for a mobile robot crossing a road. When a mobile robot approaches a road, it senses road conditions via at least one first sensor, and initiates road crossing if the road conditions are deemed suitable for crossing. As it crosses the road, the mobile robot senses, via at least one second sensor, a change in the road conditions indicating the presence of at least one hazardous moving object. In response to determining that at least one hazardous object in present, the mobile robot initiates a collision avoidance maneuver. A mobile robot configured to avoid collisions while crossing a road includes: at least one first sensor configured to sense road conditions, at least one second sensor configured to sense road conditions, and a processing component configured to carry out one or more collision avoidance maneuvers.
US11227496B1

Methods and systems including computer programs encoded on a computer storage medium, for obtaining imaging data of a parking lot that includes a set of parking spots, detecting a vehicle enter the parking lot, generating a vehicle recognition model for the vehicle, determining that the vehicle is parked in a parking spot, detecting a customer exit the vehicle, generating a customer recognition model for the customer, determining that the customer has entered a business of one or more businesses affiliated with the parking lot, and providing information related to parking space usage for the parking spot and the business to a user device.
US11227494B1

The present disclosure relates to providing transit information in an augmented reality environment. In some embodiments, images are obtained using one or more image sensors, a determination is made whether the obtained images include a map, and, in accordance with a set of one or more conditions being satisfied, transit information is displayed in the augmented reality environment. A location of the displayed transit information in the augmented reality environment may correspond to a respective feature of the map.
US11227484B2

A control unit for a remote control for controlling a machine, comprising: a processor device, at least one manually operable operating element provided on the control unit for controlling at least one machine function, which can be switched by the processor device between an activated state (b) and a deactivated state (a), and an activation sensor assigned to the operating element, which activation sensor comprises an effective sensor range and is adapted to detect a defined approach to the effective sensor range by an operator, the processor device being adapted to switch the operating element to the activated state (b) if the activation sensor detects the defined approach to the effective sensor range, and if no defined approach is detected during a preset period of time, to switch the operating element to the deactivated state, the control unit being adapted in such a way that operation of the operating element does not cause the machine function to be activated, as long as the operating element is in the deactivated state (a), and a position or/and size of the effective sensor range on the control unit being variable.
US11227479B2

Disclosed is an electronic device comprising: a communication circuit, at least one sensor for sensing an open-or-closed state of a door and a person near the door, a processor electrically connected to the communication circuit and the at least one sensor, and a memory electrically connected to the processor.
US11227478B2

Methods, devices, and systems for airfield luminaire vibration monitoring are described herein. In some examples, one or more embodiments include a computing device comprising a memory and a processor to execute instructions stored in the memory to receive a vibration signal from a sensor on an airfield luminaire, compare the vibration signal from the sensor to a vibration profile for the airfield luminaire, and determine a status of a bolt of the airfield luminaire based on the comparison.
US11227476B2

A person-detection device that automatically configures itself as a motion sensor or an occupancy sensor upon receiving a command from a home security panel or home automation hub.
US11227467B2

[Problem] The object of the present invention is to provide an information processing apparatus that enables a user to reliably perform bet-related processes such as betting. [Solution] The information processing apparatus implements: a process of displaying specified currency information corresponding to a bet by an input device to a display device when paper stock read by a reading device has specified currency information, a process of converting the specified currency information corresponding to the bet by the input device to other currency information when the paper stock read by the reading device has other currency information, and a process of displaying the converted other currency information on the display device.
US11227466B2

Multi-currency digital wallet systems for use in casino gaming and other contexts are described. Such digital wallets may allow for balances of a variety of different types of currencies to be tracked and managed by a user. Multi-currency gaming machines are also described; such gaming machines may provide award amounts in different currencies dependent on a particular game outcome.
US11227464B2

A gaming machine provides an operation unit, a display unit, and a control unit. The operation unit is an operation of the player. The display unit is operably coupled to the operation unit and is configured to display a symbol display area. The symbol display area including a plurality of cells arranged in a grid having a plurality of rows and a left plurality of columns and a right plurality of columns. Each column in the left plurality of columns being associated with a mirror column in the right plurality of columns. The control unit is operably coupled to the operation unit, the display unit is configured to initiate a game in response to player operation, and to establish an outcome of the game. Upon detection of a trigger condition, the symbols displayed in the cells of one of the columns are copied to the cells in a mirror column.
US11227456B1

A peer to peer sale locker apparatus for allowing safe peer to peer transactions for physical goods includes a front locker frame and a central housing coupled to the front locker frame. A central CPU is coupled within the central housing. A central power source, a display, a scanner, a central transmitter, a central receiver, and a Wi-Fi transceiver are coupled within the central housing and are in operational communication with the central CPU. A plurality of locker units is coupled within the front locker frame. Each locker unit comprises a locker body and a locker door hingingly coupled to the locker body. An electronic lock is coupled to the locker door to lock and unlock the locker door to the locker body to allow sellers and buyers to access a locker unit.
US11227455B2

Provided is a system and method for duplicating a master key for a vehicle. The system includes determining that a first device is communicating with a t/r device, the t/r device including an antenna for communicating with the master key. A cloning application associated with said t/r device may be operating on the first device. The t/r device may retrieve security information from said master key. The cloning application may communicate the security information for said master key to said central network system. The central network system may generate duplicate security information. The central network system may communicate the duplicate security information to the cloning application. The cloning application may transmit the duplicate security information to the t/r device to program a duplicate master key with the duplicate security information.
US11227453B2

An access system for a vehicle is provided. The access system includes antennas and an access module. The antennas are configured to each receive a signal transmitted from a portable access device to the vehicle. The signal is transmitted on a 2.4 gigahertz frequency. The access module is configured to: downconvert the received signal to generate an in-phase signal and a quadrature phase signal; perform carrier phase based ranging including implementing a music algorithm to (i) determine a distance between the portable access device and the vehicle, and (ii) determine angles of arrival of the received signal as received at the antennas; determine a location of the portable access device relative to the vehicle based on the distance and the angles of arrival; and permit access to the vehicle based on the location.
US11227452B2

To provide an enhanced method to determine from a driving characteristics of the vehicle a long term mechanical stress of a vehicle, it is proposed that during operation of the vehicle an acceleration of the vehicle is detected by an acceleration sensor in the vehicle and evaluated by a vehicle analyzing system in the vehicle, wherein a driving parameter occurring during an acceleration event in which the vehicle acceleration is above a predetermined threshold is used to determine a driving characteristics value of the vehicle.
US11227448B2

A content management system may maintain a scene description that represents a 3D virtual environment and a publish/subscribe model in which clients subscribe to content items that correspond to respective portions of the shared scene description. When changes are made to content, the changes may be served to subscribing clients. Rather than transferring entire descriptions of assets to propagate changes, differences between versions of content may be exchanged, which may be used construct updated versions of the content. Portions of scene description may reference other content items and clients may determine whether to request and load these content items for lazy loading. Content items may be identified by Uniform Resource Identifiers (URIs) used to reference the content items. The content management system may maintain states for client connections including for authentication, for the set of subscriptions in the publish/subscribe model, and for their corresponding version identifiers.
US11227446B2

A computer system captures, via one or more cameras, information indicative of the physical environment, including respective portions of the physical environment that are in a field of view. The respective portions of the physical environment include a plurality of primary features of the physical environment and secondary features of the physical environment. After capturing the information indicative of the physical environment, the system displays a user interface, including concurrently displaying graphical representations of the plurality of primary features that are generated with a first level of fidelity to the corresponding plurality of primary features of the physical environment, and one or more graphical representations of secondary features that are generated with a second level of fidelity to the corresponding one or more secondary features of the physical environment, where the second level of fidelity is lower than the first level of fidelity.
US11227445B1

Aspects of the present disclosure are directed to providing an artificial reality environment with augments and surfaces. An “augment” is a virtual container in 3D space that can include presentation data, context, and logic. An artificial reality system can use augments as the fundamental building block for displaying 2D and 3D models in the artificial reality environment. For example, augments can represent people, places, and things in an artificial reality environment and can respond to a context such as a current display mode, time of day, a type of surface the augment is on, a relationship to other augments, etc. Augments can be on a “surface” that has a layout and properties that cause augments on that surface to display in different ways. Augments and other objects (real or virtual) can also interact, where these interactions can be controlled by rules for the objects evaluated based on information from the shell.
US11227444B2

An approach is provided in which the approach establishes a communication link between a virtual reality device and a hologram system. The hologram system projects a hologram in a physical world and the virtual reality device projects a corresponding virtual hologram in a virtual world. The virtual reality device adjusts the virtual hologram based on request from a user operating the virtual reality device and the approach instructs the hologram system to adjust the hologram in a manner similar to the adjustments to the virtual hologram.
US11227439B2

Aspects of the disclosure provide remote training in a virtual reality (VR) environment. Multiple users may engage in the session. For example, a trainee may practice or be evaluated in performing a virtual version of a training task. A trainer may join the trainee's session. Embodiments enable the trainer to switch from a third-person perspective viewing the environment to the trainee's first-person perspective to see what the trainee is seeing. Virtual objects may be highlighted to guide the trainee's steps. Some embodiments may configure the training module to be engaged at various points out of order. For example, a user may select a specific point in a training sequence and work from there, replay or forward the environment in time to other points so that the trainee can skip or practice parts of the procedure.
US11227434B2

A map constructing method adopted by a map constructing apparatus and includes steps of: continually obtaining colored image and depth-image information by an image sensor and a depth sensor of the map constructing apparatus while the map constructing apparatus is moving; recognizing the colored image for determining whether a dynamic object exists; labelling an object area corresponding to the location of the dynamic object if the dynamic object exists in the colored image; mapping the object area to a depth-image coordinate adopted by the depth-image information, searching for a corresponding position of the object area in the depth-image information and filtering the object area from the depth-image information for generating an adjusted depth-image information; and, inputting the adjusted depth-image information to a map constructing algorithm for establishing map data.
US11227432B1

Disclosed is a system for efficiently accessing a point cloud via a multi-tree deconstruction of the point cloud. The system may receive the point cloud, may differentiate different sets of data points from the point cloud using differentiation criteria, and may generate different trees with each tree having leaf nodes corresponding to one of the differentiated sets of data points and parent nodes defined according to commonality in values of two or more leaf nodes. The system may receive a request to render the 3D environment, load a first tree into memory, generate a first image from the first tree data points, flush the first tree from the memory, load a second tree into the memory, generate a second image from the second tree data points, and present a composite image by combining at least the first image with the second image.
US11227426B2

Techniques of smoothing surface normals in a texture mapping application involve generating smoothed normals from the perspective of each camera using to capture images for texture mapping. Along these lines, a camera used to capture an image for texture mapping is situated at an orientation relative to the geometrical object onto which a texture mapping computer maps the texture image. The texture mapping computer places a filter window centered at a point on the geometrical object. The texture mapping computer then generates, as the smoothed normal at that point, an average normal over points in the filter window. The average normals thus computed for each camera are then used in the weights of the weighted average that is the image value at that point.
US11227419B2

The present disclosure relates to systems, methods, and non-transitory computer readable media for removing an anchor point from a Bezier spline while preserving the shape of the Bezier spline. For example, the disclosed systems can replace adjacent input segments of an initial Bezier spline that are connected at an anchor point with a new contiguous segment that does not include an anchor point and that spans the portion of the spline covered by the adjacent segments. The disclosed systems can utilize an objective function to determine tangent vectors that indicate locations of control points for generating the new segment to replace the adjacent segments. In addition, the disclosed systems can generate a modified Bezier spline that includes the new segment in place of the adjacent segments of the initial Bezier spline.
US11227414B2

A method includes processing projection data with a first reconstruction algorithm and reconstructing first reconstructed volumetric image data, wherein the first reconstructed volumetric image data has a first 3D noise function. The method further includes processing the same projection data with a second different reconstruction algorithm and reconstructing second reconstructed volumetric image data, wherein the second reconstructed volumetric image data has a second 3D noise function, which is different from the first 3D noise function. The method further includes visually presenting the first or the second reconstructed volumetric image data in a main viewport. The method further includes visually presenting a sub-portion the other of the first or the second reconstructed volumetric image data in a region of interest overlaid over a sub-portion of the main viewport.
US11227410B2

A method includes processing a video stream on at least one first camera device to identify actionable motion objects (AMOs). The at least one first camera device or computer system in communication therewith is caused to transmit metadata associated with the identified AMOs to at least one second camera device. A viewing area of the at least one second camera device is dynamically controlled in response to the metadata to enable the at least one second camera device to track and focus on at least one of the identified AMOs.
US11227404B2

A server includes: a memory storing calibration data; and a processor connected with the memory, the processor configured to: obtain a point cloud depicting a capture volume containing a transporter having a body and a holder carrying an object to be dimensioned; obtain a set of positions associated with the transporter; based on the set of positions and the calibration data, select a first portion of the point cloud excluding the body of the transporter and a mast of the holder; based on the calibration data, select a second portion of the point cloud from the first portion, excluding a base of the holder; and dimensioning the object based on the second portion of the point cloud.
US11227396B1

A method of performing adjustment of a convergence speed for an imaging parameter is based on detecting a motion of a selected face in a sequence of image frames. When the detected motion meets predefined motion criteria, a motion vector corresponding to the characterized motion of the face is computed. A value for a convergence adjustment factor for adjusting a convergence speed of an imaging parameter of the camera is determined based on the computed motion vector. The convergence speed of the imaging parameter of the camera is adjusted based on the determined value of the convergence adjustment factor.
US11227386B2

A system for performing adaptive focusing of a microscopy device comprises a microscopy device configured to acquire microscopy images depicting cells and one or more processors executing instructions for performing a method that includes extracting pixels from the microscopy images. Each set of pixels corresponds to an independent cell. The method further includes using a trained classifier to assign one of a plurality of image quality labels to each set of pixels indicating the degree to which the independent cell is in focus. If the image quality labels corresponding to the sets of pixels indicate that the cells are out of focus, a focal length adjustment for adjusting focus of the microscopy device is determined using a trained machine learning model. Then, executable instructions are sent to the microscopy device to perform the focal length adjustment.
US11227385B2

Methods for classifying and measuring orientations of objects, as nonlimiting examples, implants utilizing two-dimensional radiographs. One such method determines a three-dimensional orientation of an object based on its area projected onto a two-dimensional image and known or measured geometry. Another such method provides an automated solution to computationally determine the orientation and characterizing features of an implant based on two-dimensional radiographs. Orientations and characteristics of one or more objects in the vicinity of an object of interest may also be determined.
US11227382B2

A change detection system including an image analysis unit that analyzes an image gathered from an image gathering unit, a change detection unit that detects changes in a plurality of images taken over a predetermined time, where the change detection unit modifies the image to indicate areas where a change has occurred.
US11227381B2

An apparatus for classifying a defect generated in a substrate, includes: a first storage part for storing a first image data for defect classification determination, which includes a defect region in which the defect is generated and a surrounding region of the defect region; a first estimation part for estimating a first type of defect by using a deep learning system, based on the first image data; a second storage part for storing a second image data for defect classification estimation, which is obtained by expressing the defect region and the surrounding region by a binarized data; a second estimation part for estimating a second type of defect by using a rule-based system, based on an attribute of the defect region extracted from the second image data; and a comprehensive determination part for comprehensively determining a type of defect based on the first and second types of defects.
US11227376B2

A parameter calculation unit calculates, for camera layout information of the camera placed in the monitored area and environmental object information representing an environmental object including a structural object present in the monitored area and a placed object placed in the structural object, an image processing performance parameter indicating at least one of a hiding level of an object, an orientation of the object, and a movement of the object based on characteristic information representing characteristics of an appearance and a movement of the object determined depending on an environmental object. A suitability calculation unit calculates camera layout suitability based on image processing characteristic information representing a characteristic of the image processing and the image processing performance parameter, the camera layout suitability being an index of a level of suitability of a camera layout represented by the camera layout information for image processing of the object.
US11227369B2

A data restoring method using compressed sensing and computer program product, the method includes (a) continuously measuring data for plural times to generate measurement results correspondingly, and processing the i-th measurement result using the compressed sensing, and starting to generate data matrix when times of measuring reaches a preset times of measurements N; (b) generating a first data matrix using the [(j+1)−N]th to the j—the measurements, and then generating a first restored data; (c) generating a second data matrix using the [(j+2)−N]th to the (j+1)—the measurements, and then generating a second restored data; (d) calculating an error between the first and the second restored data; (e) determining whether the error keeps constant for a predetermined number of times; (f) if not, repeating steps (c) to (e).
US11227365B2

Various techniques are provided for reducing noise in captured image frames. In one example, a method includes determining row values for image frames comprising scene information and noise information. The method also includes performing first spectral transforms in a first domain on corresponding subsets of the row values to determine first spectral coefficients. The method also includes performing second spectral transforms in a second domain on corresponding subsets of the first spectral coefficients to determine second spectral coefficients. The method also includes selectively adjusting the second spectral coefficients. The method also includes determining row correction terms based on the adjusted second spectral coefficients to reduce the noise information of the image frames. Additional methods and systems are also provided.
US11227356B2

In some examples, a picture display apparatus for displaying content includes an audio input unit to obtain a voice uttered by an operator; a display capable of displaying the content and displaying a content list of content capable being acquired via a network; a storage to store content list settings information and operator information related to the operator, and to store voiceprint related information related to a voiceprint of the operator; and a controller. For instance, when the controller recognizes that an uttered voice obtained by the audio input unit is a voice uttered by the operator, operator information related to whom is stored in the storage, the controller may control the display to display a content list based on the content list settings information associated with the operator information of the recognized operator. The controller may further control the display to display an indication indicating the recognized operator.
US11227353B2

Devices, methods, and systems for providing security and customer service using video analytics and location tracking are described herein. One device includes a memory, and a processor configured to execute executable instructions stored in the memory to identify, using video analytics, security incidents occurring in a facility and customer service opportunities occurring in the facility, determine, upon identifying a security incident occurring in the facility, a workflow sequence for responding to the security incident, determine, upon identifying a customer service opportunity occurring in the facility, a workflow sequence for responding to the customer service opportunity, display the workflow sequence for responding to the security incident on a first user interface, and display the workflow sequence for responding to the customer service opportunity on a second user interface.
US11227343B2

One variation of a method for selectively advertising items in an image includes: loading an image to a social feed; receiving a first tag and a second tag including identification of a first item and a second item visible in the image, respectively; based on the first tag and the second tag, correlating the first item with a first product and the second item with the second product; based on the first product and the second product, sourcing a first link to a first electronic storefront and a second link to a second electronic storefront that facilitate purchase of the first product and the second product, respectively; and selectively displaying a first visual cue of the first link and a second visual cue of the second link to a first user and to a second user, respectively, according to demographics of the first user and the second user.
US11227333B2

A system, comprises a device including a memory with an application configured to validate data in an acquisition installed thereon, wherein the system is improved by the application being configured to electronically receive a query for a financial transaction between a first party and a second party, electronically transmit an encryption key from the second party to a third party, electronically transmit the encryption key from the second party to a data source and accessing a first set of a data associated with the financial transaction, electronically receive the first set of data associated with the financial transaction and validate the first set of data associated with the financial transaction by applying validation heuristics and output a finding report and provide the second party validation heuristic output in the finding report.
US11227328B2

An interactive method and device for an e-commerce application program are provided, which belong to the technical field of mobile terminal. The method includes: receiving an interactive virtual item sent from a seller account in an interactive channel of the e-commerce application program, wherein the interactive channel is a collection of groups configured to realize instant communications between the seller account and at least one user account, and the interactive channel corresponds to a product category in the e-commerce application program; determining the at least one user account in the interactive channel; and sending the interactive virtual item to the at least one user account in the interactive channel.
US11227318B2

Systems and methods are provided for coordinating an Unmanned Vehicle (UV) to perform authenticated delivery of goods. A method for coordinating a delivery may include instructing, via a communication network, a user device to collect user preferences on delivery logistics. The method may also include receiving the user preferences from the user device. The method may also include receiving user financial data from a financial service provider server. The method may also include receiving real-time information comprising location information of a UV and a user device. The method may also include authorizing the delivery of the package if an authentication process is satisfied based on the user preferences, the user financial data, and the real-time information. The method may also include transmitting to the UV a command to complete the delivery, if the delivery is authorized. The method may also include transmitting to the UV an abort command, if the delivery is not authorized.
US11227311B2

Systems and methods for using wireless beacons in point of purchase (“POP”) displays to facilitate the delivery of consumer oriented content to mobile devices is disclosed. Wireless beacons may be used to broadcast wireless signals from POP displays, where the wireless signals include data packets with unique identifiers for the wireless beacons. The wireless signals may be received by mobile devices. A remote server may communicate with the mobile device and provide the mobile device with up-to-date content associated with the POP displays. A wireless data collection device may be used to receive and collect data from the wireless beacons. The collected data may be used to assess one or more properties of the POP displays.
US11227310B2

Aspects of the subject disclosure may include, for example, transmitting a signal during a media presentation, wherein the signal is transmitted prior to an advertising timeslot during the media presentation, receiving a first indication that the signal is detected by a user device, and receiving a second indication of a status of the user device, wherein the status coincides with when the user device detects the signal. Other embodiments are disclosed.
US11227306B2

Systems and methods for the optimized allocation of content on a content distribution system according to a content distribution plan are described. In some embodiments, a management system may be configured to generate an optimized schedule for content distribution, such as an advertising campaign. For a television distribution schedule, an impressions forecast may be generated based on the available inventory and historical audience measurement information, such as television ratings for a television advertising campaign. An optimized schedule may be generated based on the impressions forecast and content may be distributed according to the optimized schedule. Measurement information relating to the distribution according to the optimized schedule may be analyzed and used to generate a re-optimized schedule, for example, that may be used to schedule the advertising campaign on a subsequent day.
US11227293B2

A digital pricing display includes a digital display unit having in interoperable communication a central processing unit, a display screen, a memory, a communication module having an antenna associated therewith, and an instruction set hosted on the memory and executable by the central processing unit, the instruction set operational to receive pricing and product information for a product and to display the product pricing and product information on the display screen. An elongate strip is attached to and extends downwardly from the digital display unit. The elongate strip has a plurality of hooks substantially in vertical alignment formed therealong; the purpose of each hook is for receiving thereon a product package corresponding to the product pricing and product information displayed by the digital display unit.
US11227287B2

An example operation may include one or more of a computer deriving a first set of metrics from processing a first and second set of data analytics, the sets associated with a subject matter. The operation further comprises the one or more computer deriving a second set of metrics from processing a third and fourth sets of data analytics, the third and fourth sets associated with the subject matter. The operation further comprises the one or more computer publishing the first and second set of metrics. The operation further comprises the one or more computer receiving a first plurality of requests for processing of analytics using the first set of metrics. The operation further comprises the one or more computer receiving a second plurality of requests for processing of analytics using the second set of metrics. The operation further comprises the one or more computer maintaining tallies of the requests.
US11227279B2

Technologies related to mobile credit payment are disclosed. In an implementation, a credit payment request is generated and sent to a user account of a credit payment application (APP) installed on a mobile computing device. A payment response message is then received from the mobile computing device. The payment response message is parsed to identify an APP public key license. A pre-stored credit authorization public key is used to verify the APP public key license and an APP public key is received from the APP public key license if the verification is successful. A payment deduction request is generated and sent to the user account of the credit payment APP. A payment authorization encrypted using asymmetric key encryption is received from the mobile computing device. The APP public key is used to decrypt the payment authorization, and a transaction log is recorded if the second response message is successfully decrypted.
US11227277B2

A mechanism is described for facilitating smart geo-fencing-based payment transactions according to one embodiment. A method, as described herein, includes detecting, by one or more capturing/sensing components of a data processing device, a first computing device within proximity of a geo-fenced location. The method further includes receiving detection information relating to the detection of the first computing device, authenticating at least one of the first computing device and the geo-fenced location, and interfacing the first computing device with a second computing device. The method may further include facilitating a payment transaction, where the payment transaction includes payment of a monetary amount from the second computing device to the first computing device, and executing the payment transaction.
US11227275B2

A payment processing method involves a server receiving a payee identifier, and linking the payee identifier to a device identifier identifying a payee device. The server receives from a payor device a payment initiation request identifying a specified payment amount and a payor identifier, links a unique token to the specified payment amount and to the payor identifier, and provides the payor device with the token. The token excludes the payor identifier and particulars of the associated payor. The server receives a payment completion request including the payee identifier and the token, and excluding the payment amount, the payor identifier and payor particulars. The server uses the payee identifier to confirm that the payment completion request was signed with the device identifier, uses the payee identifier to locate a payee account, and uses the token to determine the specified payment amount and a payor account associated with the payor identifier.
US11227266B2

As the world progresses towards a cashless payment society, there has been a rise in the various forms of emerging payment technologies. Such technologies may include digital wallet payment systems. There is a need for a bridging protocol and conversion engine that would connect gaps between these various emerging payment technologies and their respective proprietary ecosystems. There is also a need for a digital holding account that provides a protective layer to fund transfers between cashless ecosystems. The digital holding account may hold and monitor currency processed by the conversion engine. Such currency would not be transferred directly into checking account. The digital holding account may be subject to rigorous validations to scrutinize the source and destination of transferred currency. Validation may include checking distributed ledger transaction records of prior transfers of the received currency.
US11227258B2

A computer-implemented system and program product for providing a modification history of digital information associated with a project is disclosed. A local agent runs at a computing entity at least temporarily associated with a user. A list of recognition tags is provided. A determination is made by the local agent whether digital information is associated with a project based on the list of recognition tags in order to establish project-relevant information. One or more additional recognition tags are automatically extracted out of the project-relevant information. The one or more additional recognition tags are added to the list of recognition tags. The project-relevant information or information derived from the project-relevant information is stored in a data repository. Modification history information is created regarding the project-relevant information.
US11227257B1

Various embodiments of the present invention provide methods, apparatuses, systems, computing devices, and/or the like that are configured to enable temporally dynamic referential association in document collaboration server systems. For example, certain embodiments of the present invention provide methods, apparatuses, systems, computing devices, and/or the like that are configured to perform temporally dynamic referential association in document collaboration server systems by using cross-temporal visual reference data objects, temporal visual reference data objects, cross-temporal referential association data objects, temporal referential association data objects, and administrator panel user interfaces.
US11227253B2

Provided are a system and method for providing a product delivery service in an electronic transaction using a smartphone in which delivery product discharging devices are suitably disposed in specific places of main areas such as a subway station or a bus stop and a purchaser may conveniently pick up an ordered delivery product from a delivery product discharging device previously designated by the purchaser using a smartphone of the purchaser.
US11227252B1

Techniques for token-based control of item transport operations are described. In some examples, a Transport Rules Broker (“TRB”) receives a selection of transport rules associated with a user. The transport rules control operations that are performed by a carrier when the carrier transports an item from, for, or to the user. The TRB generates a token that is associated with the transport rules and/or the user. In a typical scenario, the user provides the token to a merchant computing system when ordering an item. Having received the token, the merchant computing system provides it (directly or indirectly) to the carrier computing system. The token controls operations that are performed by the carrier when the carrier transports the item to the user or other destination. In particular, the token causes the carrier to transport the item in accordance with the selected rules that are associated with the token.
US11227242B2

A method includes determining, based at least in part on sensor data about a worksite, first and second conditions associated with a location at the worksite. The method also includes determining, based at least in part on the first condition and the second condition, a first risk factor associated with a first portion of the worksite, the first portion including the location and area proximate the location and determining a second risk factor associated with a second portion of the worksite adjacent the first portion. The method may also include generating a graphical user interface comprising a graphical representation of the first portion of the worksite and the second portion of the worksite and visual indications of the risk factors. Further aspects may include controlling machines and/or electronic devices at the worksite when a value associated with the risk factors is greater than a threshold value.
US11227239B2

Systems and methods for in-transit detection and mitigation of transportation service disruptions in the travel industry using fragmented source data. A notification including a record identifier is received. The notification identifies a disruption element created upon detecting a disruption event that impacts a segment of an itinerary. The record identifier corresponds to a reservation record that was generated responsive to reserving the itinerary. The reservation record is accessed to obtain data stored in the disruption element that indicates a net difference between a base state of the segment when ticketed and an actual state of the segment when the segment terminates. A disruption metric quantifying a relative impact of disruption events on the segment is determined using that disruption element data. One or more mitigation options that reduce the disruption metric are identified. An instruction is triggered that causes a remote service to effectuate those mitigation options.
US11227227B2

A method, apparatus and product for automatic detection of anomalies in graphs. The method comprising obtaining training data, the training data comprising a plurality of graphs, each defined by nodes and edges connecting between the nodes, at least some of the nodes are labeled; determining a statistical model of a graph in accordance with the training data, the statistical model takes into account at least one structured and labeled feature of the graph, wherein the structured and labeled feature of the graph is defined based on a connection between a plurality of nodes and based on at least a portion of the labels of the plurality of nodes; obtaining an examined graph; and determining a score of the examined graph indicative of a similarity between the examined graph and the training data, wherein the score is based on a value of the structured and labeled feature in the examined graph.
US11227226B2

Methods, systems, and computer readable storage media are disclosed for generating joint-probabilistic ensemble forecasts for future events based on a plurality of different prediction models for the future events. For example, in one or more embodiments the disclosed system determines error values for various predictions from a plurality of different prediction models (i.e., “forecasters”) for previous events. Moreover, in one or more embodiments the system generates an error probability density function by mapping the error values to an error space and applying a kernel density estimation. Furthermore, the system can apply the error probability density function(s) to a plurality of predictions from the forecasters for a future event to generate a likelihood function and a new prediction for the future event.
US11227219B2

The present disclosure provides systems and methods for storing digital information into nucleic acid molecules in various ways. Digital information may be received as a sting of symbols, wherein each symbol in the string of symbols has a symbol value and a symbol position within the string of symbols. A first identifier nucleic acid molecule may be formed by depositing M selected component nucleic acid molecules into a compartment, the M selected component nucleic acid molecules being selected from a set of distinct component nucleic acid molecules that are separated into M different layers, and physically assembling the M selected component nucleic acid molecules. A plurality of identifier nucleic acid molecules may be formed, each corresponding to a respective symbol position. The identifier nucleic acid molecules may be formed in a pool having powder, liquid, or solid form.
US11227218B2

A natural language processing system that includes a sentence selector and a question answering module. The sentence selector receives a question and sentences that are associated with a context. For a question and each sentence, the sentence selector determines a score. A score represents whether the question is answerable with the sentence. Sentence selector then generates a minimum set of sentences from the scores associated with the question and sentences. The question answering module generates an answer for the question from the minimum set of sentences.
US11227215B2

Mechanisms are provided for generating an adversarial perturbation attack sensitivity (APAS) visualization. The mechanisms receive a natural input dataset and a corresponding adversarial attack input dataset, where the adversarial attack input dataset comprises perturbations intended to cause a misclassification by a computer model. The mechanisms determine a sensitivity measure of the computer model to the perturbations in the adversarial attack input dataset based on a processing of the natural input dataset and corresponding adversarial attack input dataset by the computer model. The mechanisms generate a classification activation map (CAM) for the computer model based on results of the processing and a sensitivity overlay based on the sensitivity measure. The sensitivity overlay graphically represents different classifications of perturbation sensitivities. The mechanisms apply the sensitivity overlay to the CAM to generate and output a graphical visualization output of the computer model sensitivity to perturbations of adversarial attacks.
US11227213B2

A device and a method for improving a processing speed of a neural network and applications thereof in the neural network where the device includes a processor configured to perform: determining, according to a predetermined processing speed improvement target, a dimension reduction amount of each of one or more parameter matrixes in the neural network obtained through training; preprocessing each parameter matrix based on the dimension reduction amount of the parameter matrix; and retraining the neural network based on a result of the preprocessing to obtain one or more dimension reduced parameter matrixes so as to ensure performance of the neural network meets a predetermined requirement. According to the embodiments of the present disclosure, it is possible to significantly improve the processing speed of the neural network while ensuring the performance of the neural network meets the predetermined requirement.
US11227207B1

Disclosed is a data processing system that includes compile time logic to section a graph into a sequence of sections, configure a first section to generate a first set of output tiles in a first target tiling configuration in response to processing a first set of input tiles in a first input tiling configuration, and configure a second section to generate a second set of output tiles in a second target tiling configuration in response to processing the first set of output tiles in a second input tiling configuration. Runtime logic is configured to pad a first input into a first padded input, read the first set of input tiles from the first padded input in the first input tiling configuration, and process the first set of input tiles through the first section to generate the first set of output tiles in the first target tiling configuration.
US11227197B2

Identifying words to accurately describe, with a range of specificity, an image is provided. A vector space corresponding to the image is generated using a convolutional neural network to extract a hierarchy of features ranging from broad to specific from the image. Closest vocabulary ranging from broad to specific are identified for the image using Huffman coding on the vector space. Accurate words ranging from broad to specific are identified that describe the image based on vocabulary output of the Huffman coding on the vector space. The accurate words ranging from broad to specific describing the image are output.
US11227190B1

Methods, systems, and apparatus for training a graph neural network. An example method includes obtaining a complete graph; dividing the complete graph into a plurality of subgraphs; obtaining a training graph to participate in graph neural network training based on selecting at least one subgraph from the plurality of subgraphs; obtaining, based on the training graph, a node feature vector of each node in the training graph; obtaining a node fusion vector of each current node in the training graph; determining a loss function based on node labels and the node fusion vectors in the training graph; and iteratively training the graph neural network to update parameter values of the graph neural network based on optimizing the loss function.
US11227189B2

Systems and methods including one or more processors and one or more non-transitory storage devices storing computing instructions configured to run on the one or more processors and perform acts of receiving a digital image comprising multiple items; determining an embedding for the digital image using a machine learning algorithm trained on one or more combined digital images, the combined digital image comprising one or more annotated digital images; identifying an item of the multiple items in the digital image; and facilitating an alteration of a GUI on an electronic device in response to identifying the item in the digital image.
US11227186B2

The present disclosure relates to a method and a device for training an image recognition model and a related device. The method includes: extracting sub-image feature data from a detection frame sub-image of an input image; determining element feature data matching the sub-image feature data from an index element database; and outputting images related to the element feature data as training images for training the image recognition model. The index element database is built in advance based on a plurality of element feature data extracted from a plurality of candidate images.
US11227185B2

The present disclosure relates to systems, methods, and non-transitory computer readable media for utilizing a deep neural network-based model to identify similar digital images for query digital images. For example, the disclosed systems utilize a deep neural network-based model to analyze query digital images to generate deep neural network-based representations of the query digital images. In addition, the disclosed systems can generate results of visually-similar digital images for the query digital images based on comparing the deep neural network-based representations with representations of candidate digital images. Furthermore, the disclosed systems can identify visually similar digital images based on user-defined attributes and image masks to emphasize specific attributes or portions of query digital images.
US11227183B1

A data extraction and expansion system receives documents with data to be processed, extracts a set of a specific type of entities from the received documents, expands the set of entities by retrieving additional entities of the specific type from an ontology and other external data sources to improve the match between the received documents. The ontology includes data regarding entities and relationships between entities. The ontology is built by extracting the entity and relationship information from external data sources and can be constantly updated. If the additional entities to expand the set of entities cannot be retrieved from the ontology then a real-time search of the external data sources is executed to retrieve the additional entities from the external data sources.
US11227181B2

A key identification system is provided. The key identification system comprises an imaging system to capture an image of a master key, and a logic to analyze the captured image. The imaging system may be capture an image of a groove in the master key from an angle between perpendicular and parallel to the blade of said master key. The logic analyzes the captured image to compare characteristics of the groove with groove characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank. The key identification system may further compensate for displacement or orientation of the master key with respect to the imaging system when analyzing characteristics of the groove.
US11227178B2

A back-propagation significance detection method based on depth map mining, comprising: for an input image Io, at a preprocessing phase, obtaining a depth image Id and an image Cb with four background corners removed of the image Io; at a first processing phase, carrying out positioning detection on a significant region of the image by means of the obtained image Cb with four background corners removed and the obtained depth image Id to obtain the preliminary detection result S1 of a significant object in the image; then carrying out depth mining on a plurality of processing phases of the depth image Id to obtain corresponding significance detection results; and then optimizing the significance detection result mined in each processing phase by means of a back-propagation mechanism to obtain a final significance detection result map. The method can improve the detection accuracy of the significance object.
US11227172B2

The technology disclosed relates to coordinating motion-capture of a hand by a network of motion-capture sensors having overlapping fields of view. In particular, it relates to designating a first sensor among three or more motion-capture sensors as having a master frame of reference, observing motion of a hand as it passes through overlapping fields of view of the respective motion-capture sensors, synchronizing capture of images of the hand within the overlapping fields of view by pairs of the motion-capture devices, and using the pairs of the hand images captured by the synchronized motion-capture devices to automatically calibrate the motion-capture sensors to the master frame of reference frame.
US11227167B2

In some implementations, a method is provided. The method includes obtaining an image depicting an environment where an autonomous driving vehicle (ADV) may be located. The image comprises a plurality of line indicators. The plurality of line indicators represent one or more lanes in the environment. The image is part of training data for a neural network. The method also includes determining a plurality of line segments based on the plurality of line indicators. The method further includes determining a vanishing point within the image based on the plurality of line segments. The method further includes updating one or more of the image or metadata associated with the image to indicate a location of the vanishing point within the image.
US11227164B2

Using various embodiments, methods and systems to provide safeguard a neighborhood or community are described. In one embodiment, a system is configured to receiving a license plate data of a vehicle, fetch indices of a set of known license plate data from a schema object, where the set includes vehicle license plate information of a plurality of vehicles of a neighborhood or community. In one embodiment, the set can be represented in memory using by a binary tree in memory. The system is then configured to sort the binary tree using a tree sorting algorithm. Thereafter, a tree searching algorithm is used to determine whether the license plate data is found in the binary tree. When the license plate data is found in the binary tree, it is determined that the vehicle is known to the neighborhood or community, otherwise it is determined to be not known.
US11227161B1

A physiological signal prediction method includes: collecting a video file, the video file containing long-term videos, and contents of the video file containing data for a face of a single person and true physiological signal data; segmenting a single long-term video into multiple short-term video clips; extracting, by using each frame of image in each of the short-term video clips, features of interested regions for identifying physiological signals so as to form features of interested regions of a single frame; splicing, for each of the short-term video clips, features of interested regions of all fixed frames corresponding to the short-term video clip into features of interested regions of a multi-frame video, and converting the features of the interested regions of the multi-frame video into a spatio-temporal graph; inputting the spatio-temporal graph into a deep learning model for training, and using the trained deep learning model to predict physiological signal parameters.
US11227158B2

Systems and methods for robust biometric applications using a detailed eye shape model are described. In one aspect, after receiving an eye image of an eye (e.g., from an eye-tracking camera on an augmented reality display device), an eye shape (e.g., upper or lower eyelids, an iris, or a pupil) of the eye in the eye image is calculated using cascaded shape regression methods. Eye features related to the estimated eye shape can then be determined and used in biometric applications, such as gaze estimation or biometric identification or authentication.
US11227156B2

Methods, systems, and devices for personalized (e.g., user specific) eye openness estimation are described. A network model (e.g., a convolutional neural network) may be trained using a set of synthetic eye openness image data (e.g., synthetic face images with known degrees or percentages of eye openness) and a set of real eye openness image data (e.g., facial images of real persons that are annotated as either open eyed or closed eyed). A device may estimate, using the network model, a multi-stage eye openness level (e.g., a percentage or degree to which an eye is open) of a user based on captured real time eye openness image data. The degree of eye openness estimated by the network model may then be compared to an eye size of the user (e.g., a user specific maximum eye size), and a user specific eye openness level may be estimated based on the comparison.
US11227151B2

Methods, systems, and computer readable media for recognizing one or more hand gestures of a hand-based signal or conversation are described. Some implementations include obtaining one or more unprocessed images of the hand-based signal or conversation including images of at least one of the one or more hand gestures extracting one or more spectral features from the one or more unprocessed images using a Gabor filter bank, receiving the one or more unprocessed images of the one or more hand gestures and the extracted one or more spectral features by a Convolution Neural Network (CNN), and outputting a classification for the at least one of the one or more hand gestures using the Convolution Neural Network (CNN). In some implementations, at least one of the extracted one or more spectral features and at least one of the one or more unprocessed images of the one or more hand gestures are concatenated and input to the Convolution Neural Network (CNN).
US11227147B2

A face image processing method includes: segmenting a face in an image to be processed to obtain at least one organ image block; respectively inputting the at least one organ image block into at least one first neural network, where at least two different types of organs correspond to different first neural networks; and extracting key point information of an organ from the respective input organ image block by the at least one first neural network to respectively obtain key point information of at least one corresponding organ of the face.
US11227146B2

The subject matter described in this disclosure can be embodied in methods and systems for stabilizing video. A computing system determines a stabilized location of a facial feature in a frame of video accounting for its location in a previous frame. The computing system determines a physical camera pose in virtual space and maps the frame into virtual space. The computing system determines an optimized virtual camera pose using an optimization process that determines (1) a difference between the stabilized location of the facial feature and a location of the facial feature when viewed from a potential virtual camera pose, (2) a difference between the potential virtual camera pose and a previous virtual camera pose, and (3) a difference between the potential virtual camera pose and the physical camera pose. The computing system generates the stabilized view of the frame using the optimized virtual camera pose.
US11227145B2

There are provided systems and methods for facial landmark detection using a convolutional neural network (CNN). The CNN comprises a first stage and a second stage where the first stage produces initial heat maps for the landmarks and initial respective locations for the landmarks. The second stage processes the heat maps and performs Region of Interest-based pooling while preserving feature alignment to produce cropped features. Finally, the second stage predicts from the cropped features a respective refinement location offset to each respective initial location. Combining each respective initial location with its respective refinement location offset provides a respective final coordinate (x,y) for each respective landmark in the image. Two-stage localization design helps to achieve fine-level alignment while remaining computationally efficient. The resulting architecture is both small enough in size and inference time to be suitable for real-time web applications such as product simulation and virtual reality.
US11227127B2

Embodiments relate to an intelligent computer platform to support a chatbot platform. A semantically enriched document is subjected to natural language processing to generate a cache of tokens, and further classify the tokens, including noun and verb tokens. For each verb token, a corresponding intent is generated, and for each noun token a corresponding entity is generated. A relationship between the generated intents and entities is mapped, and a topology representing the mapped relationship is constructed. A primary verb is identified and assigned as a root node in the topology, and an arrangement of entities related to primary verb are identified and assigned as child nodes related to the root node. The constructed topology is consumed to an AI schema for implementation in the chatbot platform to support real-time communication flow.
US11227120B2

Methods for classification of microblogs using semi-supervised open domain targeted sentiment classification. A hidden Markov model support vector machine (SVM HMM) is trained with a training dataset combined with discrete features. A portion of the training dataset is clustered by k-means clustering to generate cluster IDs which are normalized and combined with the discrete features. After formatting, the combined dataset is applied to the SVM HMM and the C parameter, which is optimized by calculating a zero-one error at each iteration. The open domain targeted sentiment classification methods uses less labelled data than previous sentiment analysis techniques, thus decreasing processing costs. Additionally, a supervised learning model for improving the accuracy of open domain targeted sentiment classification is presented using an SVM HMM.
US11227117B2

A method, a device and a computer program product for processing a segment are proposed. In the method, a property of at least one of a first segment and a second segment in a segment set is obtained. The segment set includes a plurality of segments belonging to at least one conversation. The second segment occurs after the first segment. A boundary feature of at least one of the first segment and the second segment is determined based on the property. The boundary feature indicates whether there is a boundary of a conversation after the first segment.
US11227113B2

Batch interaction with a computerized question answering system can produce an answer that more closely relates to a user's information need. A batch of questions can be generated interactively, and provides a context for a first question received from a user. The batch of questions includes or more additional questions which have terms with a nonsynonymous semantic relation to a first term in the first question. A question answering system can process the batch of questions to determine candidate answers. An answer to the first question can be determined based, at least in part, on a combined ranking of the candidate answers.
US11227111B2

A first version of a document is accessed so that a corresponding contract dictionary is generated with a plurality of string tokens. Subsequently, a visual distinction is assigned to the corresponding ranking priority of each of the plurality of string tokens. A second version of the document is accessed and changed string tokens are identified by comparing the second version with the first version of the document. A corresponding ranking priority is then retrieved for each of the changed string tokens in the contract dictionary so that each of the changed string tokens can be highlighted with the visual distinction corresponding to the ranking priority. Each of the highlighted changed string tokens can then be displayed with the visual distinction and the document on a graphical user interface.
US11227101B2

Systems and methods are disclosed for a format agnostic document viewer with document translation that provide the ability for a user to either select a portion of the viewed document text in the format agnostic viewer and have it translated into a selected language, or for the user to have the entire document presented in the format agnostic viewer in translated form. The translated text may be shown side-by-side with the original document text in the format agnostic viewer, or can replace the original text on the visible page in the format agnostic viewer. The translated text may be formatted according to, or displayed with, some enhancements to account for differences in the original text and translated text or other differences.
US11227100B2

A method for sharing documents between on-demand services is provided. In an embodiment, a user of a first on-demand service may be able to view a list of content that includes content stored at the first on-demand service and content stored at a second on-demand service. The content of the second on-demand service may be associated with information about the content, allowing the content to be shared among multiple users of the first on-demand service. The user wanting to view the content, select or click on an indicator identifying the content, a connection to the second on-demand service is established, and images of the content are sent from the second on-demand service to the first on-demand service.
US11227092B2

A main board for a computer device can include main board components arranged on a first surface of the main board and Trusted Platform Module (TPM) components arranged on the first surface of the main board. The TPM components can be located in a predetermined area of the main board that is detachable from the main board (e.g. by means of a predetermined break line). A method for producing an embodiment of the main board with an integrated TPM can include producing a Printed Circuit Board (PCB); arranging a plurality of main board components in a first area of the PCB; and arranging TPM components in a second area of the PCB that is a detachable predetermined area of the main board. A predetermined breakline which at least partly surrounds the predetermined area can be formed by drilling holes to form a perforated line.
US11227090B2

The present invention is a process by which an engineer can provide as input the design, functional verification goals, and other abstract design details, and receive as output an agent which can be integrated into traditional test benches and will generate stimuli to automatically hit the functional coverage goals for the design. The present invention may employ a system which includes a learning configurator, a pre-trained learning test generator, and a test bench. The pre-trained learning test generator is communicatively coupled to the generator and notably comprises a learning algorithm.
US11227088B1

Provided is a method for simulating a semiconductor device. The method includes extracting a Hamiltonian and an overlap matrix of a semiconductor device using a density functional theory or a tight-binding method, calculating each of Bloch states for each corresponding energy, obtaining a first reduced Hamiltonian and a first reduced overlap matrix with a reduced matrix size, and calculating a final transformation matrix and a final energy band structure in which all of unphysical branches, wherein the semiconductor device includes a source region, a drain region, and a channel region between the source region and the drain region, wherein the channel region includes unit cells, each of which includes different material or has different structure.
US11227081B2

According to some embodiments, methods and systems may be associated with an integration computing environment for an enterprise. An integration modeling design platform may receive, from an integration developer via a modeling notation, an indication that a retry component should be associated with an integration task. The integration modeling design platform may then configure the retry component for the integration task in connection with at least one of an integration adapter and an integration component (e.g., a selection of a messaging component, a quality of service, a retry period, an exponential back off option, etc.). According to some embodiments, an integration generation framework, coupled to the integration modeling design platform, may automatically construct an appropriate runtime retry representation based on the configured retry component (e.g., by creating a domain-specific language software component).
US11227077B2

A laboratory physical plant structure and corresponding method disclosed herein improves the time and efficiency of processing of laboratory samples. One embodiment includes a physical arrangement of the bloodletting stations and sorting of specimens including two levels wherein sorting and collection occurs on Level 1 and Processing occurs on Level 2. A lift or other transportation system between the levels is utilized to quickly process and move the samples being collected and tested.
US11227066B2

Systems, methods, and computer-readable storage media for permission control in a social media platform. An exemplary system receives a social media profile of a user, encrypts/anonymizes the profile using asymmetrical encryption, then asks the user for permission before sharing any aspect of the user's profile with other entities. As the user engages with social media content on the social media platform, options are provided to the user which grant the user the opportunity to share specific portions of their profile with other entities, which sharing is done using a private key exclusive to the user.
US11227063B2

Embodiments described herein provide a privacy mechanism to protect user data when transmitting the data to a server that estimates a frequency of such data amongst a set of client devices. In one embodiment, a differential privacy mechanism is implemented using a count-mean-sketch technique that can reduce resource requirements required to enable privacy while providing provable guarantees regarding privacy and utility. For instance, the mechanism can provide the ability to tailor utility (e.g. accuracy of estimations) against the resource requirements (e.g. transmission bandwidth and computation complexity).
US11227059B2

A computer system accesses and processes regulatory requirements for data item(s) in a private manner. Both the data item(s) and the regulatory requirements are accessed and processed privately. The computer system creates an orchestration strategy satisfying the regulatory requirements. The orchestration strategy includes recommendation(s) associating the data item(s) with process(es). The computer system outputs indications of the orchestration strategy to be used to implement regulatory compliance for processing of the data item(s) by associated ones of the process(es). The computer system may be implemented as a portion of a cloud environment, and compliance may be offered as a service for cases where data usage by an application (implementing the process(es)) does not address compliance with the regulatory requirements, but following the orchestration strategy ensures use of the application on the data item(s) will comply with the regulatory requirements.
US11227053B2

A malware attack is detected in a computing system by monitoring file I/O and coordinated network I/O traffic and referencing criteria including a correlation coefficient calculated relative to the I/O. If the file I/O and coordinated network I/O was initiated by an executing process that meets criteria indicative of malware, a correlation coefficient is calculated with respect to the file I/O and coordinated network I/O. The executing process is identified as malware if a threshold criteria is met that considers the correlation coefficient.
US11227051B2

A method for detecting computer virus applied in a computing device includes obtaining a list of clean files each with file storage path and calculating a hash value of the file name corresponding to each storage path. An original status list according to the hash value and the storage path is generated, and the original status list is written in to a blockchain network. After the computing device becomes connected to a network and therefore exposed to viruses a second list of the files can be obtained and hash value of the file name is compared to the hash value in the original status list. Differences in hash values are deemed the result of a virus and the user is warned. A computing device and storage medium are also disclosed.
US11227047B1

The presently disclosed subject matter includes an apparatus that receives a dataset with values associated with different digital resources captured from a group of compute devices. The apparatus includes a feature extractor, to generate a set of feature vectors, each feature vector from the set of feature vectors associated with a set of data included in the received dataset. The apparatus uses the set of feature vectors to validate multiple machine learning models trained to determine whether a digital resource is associated with a cyberattack. The apparatus selects at least one active machine learning model and sets the remaining trained machine learning models to operate in an inactive mode. The active machine learning model generates a signal to alert a security administrator, blocks a digital resource from loading at a compute device, or executes other remedial action, upon a determination that the digital resource is associated with a cyberattack.
US11227046B2

Disclosed herein is a method of performing a password challenge in an embedded system. The method includes receiving a password, scrambling the sub-words of the password pursuant to scramble control codes, retrieving a verification word, scrambling the sub-words of the verification word pursuant to the scramble control codes, and comparing the scrambled sub-words of the password to the scrambled sub-words of the verification word. Access to a secure resource is granted if the scrambled sub-words of the password match the scrambled sub-words of the verification word. The scramble control codes cause random reordering of the sub-words of the password and sub-words of the verification word in a same fashion, and insertion of random delays between the comparison of different sub-words of the password to corresponding sub-words of the verification word.
US11227044B2

Aspects of the present disclosure include systems and methods for generating and managing user authentication rules of a computing device. In an example, a computing device may include a memory storing instructions and a processor communicatively coupled with the memory and configured to execute the instructions. The processor may determine a state of the computing device, wherein the state of the computing device is one of a locked state or an unlocked state. The processor may determine a user authentication rule corresponding to the state of the computing device. The processor may also identify whether a combination of signals associated with the user authentication rule of the computing device are received by the computing device. The processor may also change or maintain the state of the computing device based on the combination of signals being received.
US11227042B2

A screen unlocking method and apparatus, and a storage medium are provided. The method includes: obtaining a message that carries identity identification information of the first terminal; matching the identity identification information of the first terminal with a preset identification information matching rule; and controlling the screen to be unlocked in response to determining that the identity identification information of the first terminal meets the preset identification information matching rule.
US11227041B2

Using various embodiments, methods and systems for securing user data are described. In one embodiment, a system receives a user authentication token, an application identification, and a cryptographically random number from a software application. It then generates an identification hash value using the received information and determines whether the generated identification hash value corresponds to another identification hash value known to the system. If the hash values correspond, it authorizes the software application to perform actions on behalf of a user.
US11227035B2

On a device, application usage information is monitored. From an analysis of the application usage information, an application usage pattern information is constructed. A pattern in the application usage pattern information identifies a second application in a second set of applications, wherein the second application is concurrently active with a first application in the first set of applications during an activity on the device. From a current activity on the device, the current activity having a degree of similarity above a threshold degree of similarity to the activity of the pattern in the application usage pattern information is detected. For user interaction responsive to the detecting, at least two applications selected based on the pattern are activated.
US11227034B2

A system for providing a password hint authenticates a username and password against a stored username and stored password. Upon failure of the authentication, the system determines a password formation rule that was in force when the user created the stored password then compares the password to the password formation rule and if the password violated any part of the password formation rule, the system reports each part of the password that violated the any part of the password formation rule.
US11227018B2

Aspects of the present invention disclose a method for generating a reasoning query based on a user selection of a generated data visualization of a knowledge graph. The method includes one or more processors generating a knowledge graph of a domain. The method further includes constructing a hierarchy of the knowledge graph. The method further includes generating a data visualization of the domain based at least in part on the hierarchy of the knowledge graph. The method further includes identifying a user selection of one or more nodes of the data visualization. The method further includes generating a reasoning query corresponding to the domain based on the data visualization of the domain and the user selection. The method further includes determining whether the knowledge graph includes a collection of nodes that are on a level of the constructed hierarchy that corresponds to a level of the one or more nodes.
US11227012B2

Systems and methods for generating embeddings for nodes of a corpus graph are presented. More particularly, operations for generation of an aggregated embedding vector for a target node is efficiently divided among operations on a central processing unit and operations on a graphic processing unit. With regard to a target node within a corpus graph, processing by one or more central processing units (CPUs) is conducted to identify the target node's relevant neighborhood (of nodes) within the corpus graph. This information is prepared and passed to one or more graphic processing units (GPUs) that determines the aggregated embedding vector for the target node according to data of the relevant neighborhood of the target node.
US11227004B2

In accordance with an example embodiment, large scale category classification based on sequence semantic embedding and parallel learning is described. In one example, one or more closest matches are identified by comparison between (i) a publication semantic vector that corresponds to at least part of the publication, the publication semantic vector based on a first machine-learned model that projects the at least part of the publication into a semantic vector space, and (ii) a plurality of category vectors corresponding to respective categories from a plurality of categories.
US11226997B2

A chatbot answer database can be generated from a question and answer document. A question/answer processor can receive a document that includes questions and answers. A set of entities can be determined from the answers in the document. A set of triplets can be constructed from the answers, and stored in a chatbot database. For each answer, the question/answer processor can determine text for slots of the triplet based on the entities extracted from the answer. The triplet can be stored as a tree structure in a database of tree structures associated with the document. A chatbot can receive questions, and provide answers based on the database of tree structures associated with the document.
US11226988B1

A social networking system suggests events for a target user based on stored data in the social networking system related to the target user and to events. The social networking system may suggest events based on the target user's affinity for, connections with, or interactions with objects in the social networking system connected to or otherwise associated with the events. For example, an event is suggested to a target user if users connected to the target user already accepted an invitation to the event. As another example, an event organized by a particular entity is suggested to the target user because of interactions between the target user and other content provided by the entity. Invitations to suggested events may be presented to the target user via a client device, allowing the target user to easily join a suggested event.
US11226982B2

An enterprise system which facilitates synchronization of offline data. Offline data created during an offline session or sessions (collectively an offline session) prior to synchronization is assigned a temporary key. Changes of offline data created during an offline session is assigned the temporary key of the data to which the change is associated. The temporary key is mapped to a new created backend key and stored in a mapping table. Using the mapping table, temporary keys associated with the changes are swapped with backend keys which the temporary keys are mapped. This maintains data persistency of newly created and change data during an offline session.
US11226974B2

The present disclosure provides improved systems, methods, and computer readable media for blending data from data sets that reside on different systems. This is done by generating subqueries from a main data model blend query, sending the subqueries to respective separate systems, accessing the results to all subqueries at a primary system, and performing a blend based on the main data model blend query at the primary system.
US11226972B2

Query service receives a query comprising at least a name component. The query service searches a document corpus to identify multiple passages, each comprising a mention of the name component within a selection of one or more documents of the document corpus. The query service collects bins, each bin comprising a distinct selection of the passages from the one or more documents, each of the bins identifying a separate relationship the name component participates in within the distinct selection of passages. The query service assesses a separate score of each respective bin reflecting the relevance of each respective bin to the query. The query service returns a response to the query with the bins each ranked according to each separate score.
US11226966B2

Described herein is a system and method of journaling of a streaming anchor resource. An input node can store a value of a property associated with the streaming data in a persistent indexed data structure. The input node can generate an anchor that describes a particular point in time in a data stream. The anchor can include an index into the persistent indexed data structure of the stored value of the property associated with the streaming data. The generated anchor and streaming data can be provided to the downstream node. During recovery of a downstream node, the input node can utilize a received anchor to retrieve a value of a property associated with the streaming data from the persistent indexed data structure, and, provide a batch of data based upon the received anchor and the retrieved property value.
US11226960B2

A natural language interface for databases (NLIDB) component of a database-management system receives a user-submitted natural-language query. The NLIDB parses the query into keywords and maps each keyword onto a corresponding query fragment that identifies a predicate of a non-join condition, or other type of expression, of a structured query. The NLIDB selects an optimal mapping for each keyword with the aid of a Query Fragment Graph (QFG) that counts the number of occurrences of each fragment, and the number of co-occurrences of each pair of fragments, in previously received structured queries. The NLIDB then uses the QFG, optionally augmented by contextual data, to select join paths most likely to be consistent with the semantic intent of the user. The NLIDB generates a structured query that incorporates the mapped query fragments and selected join paths and forwards. The structured the query is then forwarded to downstream DBMS components.
US11226950B2

Techniques for providing feed-based case management on an online social network. A user interface that includes a publisher and an information feed is provided. Information associated with a record is received and the record is updated in a database system. A feed item associated with the database system update is generated and provided in the information feed. The feed item includes one or more actionable selections providing a reference to the publisher. Selection of one of the one or more actionable selections causes the publisher to be operable to receive further information associated with the record. The record is capable of being updated based on the further information. In some implementations, the record is a case and the user interface serves as a single interface for all interactions required in solving the case.
US11226935B2

Technique determine (or detect) duplicated data. The techniques involve: in response to determining that data at a first position in input data is the same as predetermined data, determining a feature value of a selected portion of input data; determining whether the feature value matches with a pre-stored duplicated data pattern in a duplicated data pattern list; and in response to determining that the feature value matches with the duplicated data pattern, determining an association of the input data with reference data which is associated with the matched pattern.
US11226932B2

At least one unique collection of storage artifacts can be specified to indicate that the storage artifact is a member of the unique collection. Each storage artifact can be a discrete object comprising digitally encoded content that is stored as a node within a tree structure of a tangible storage medium. The collection can be referenced by a set of different storage artifacts to form a collection of related storage artifacts. Each storage artifact can correspond to different collections, wherein membership within a collection is independent of a storage path within the tree structure. A file management action relating to the storage artifact can be performed. The file management action can be dependent upon the storage artifact being a member of the unique collection.
US11226928B2

A packet transmission apparatus includes a processor such as a CPU, a first processing chip, and a second processing chip. The second processing chip is separately connected to the processor and the first processing chip. For example, it may be considered that the second processing chip is disposed between the processor and the first processing chip. The first processing chip is a non-programmable chip such as an ASIC chip, and the second processing chip is a programmable chip such as an FPGA chip. The second processing chip supports a second functional, and the second functional is updatable. Both the processor and the first processing chip are configured to exchange a packet with the second processing chip. The second processing chip is configured to process a received packet based on the second functional, and send the processed packet to the processor or the first processing chip.
US11226923B1

A bidirectional serial communication interface comprising a slave powered by a master connected to the slave via a signal line and a return line is disclosed. The master includes a master switch inserted in a line connecting a supply voltage to the signal line and a transceiver transmitting binary signals by opening and closing the master switch and receiving binary signals whilst the master switch is open. The slave includes an energy storage charged via the signal line and providing an internal power supply; a pull-up switch inserted in a line connecting the signal line to the internal power supply; a pull-down switch inserted in a line connecting the signal line to the return line; and a transceiver transmitting binary signals by opening and closing the pull-up and the pull-down switch whilst the master switch is open and receiving binary signals whilst the pull-up and the pull-down switch are open.
US11226906B2

Embodiments of the invention provide a computing device comprising one or more processors, each processor comprising one or more processing unit, said one or more processing units being configured to execute at least one program, each program comprising data and/or instructions, the computing device further comprising, for at least some of the processors, a processor cache associated with each processor, the processor cache being configured to access data and/or instructions comprised in the programs executed by the processor, the computing device comprising: an auxiliary cache configured to access metadata associated with the data and/or instructions comprised in said programs; a security verification unit configured to retrieve, from the auxiliary cache, at least a part of the metadata associated with data and/or instructions corresponding to a memory access request sent by a processor (11) to the processor cache (117).
US11226903B1

This disclosure provides techniques hierarchical address virtualization within a memory controller and configurable block device allocation. By performing address translation only at select hierarchical levels, a memory controller can be designed to have predictable I/O latency, with brief or otherwise negligible logical-to-physical address translation time. In one embodiment, address transition may be implemented entirely with logical gates and look-up tables of a memory controller integrated circuit, without requiring processor cycles. The disclosed virtualization scheme also provides for flexibility in customizing the configuration of virtual storage devices, to present nearly any desired configuration to a host or client.
US11226893B2

According to an embodiment of the present disclosure for solving the aforementioned problem, disclosed is a computer program stored in a computer-readable storage medium executable by one or more processors, in which when the computer program is executed by one or more processors of a computer device, the computer program allows the one or more processors to perform the following operations for data processing, and the operations may include: an operation of generating a plurality of transformed data based on each of a plurality of data included in a data set; an operation of generating a test data set based on the plurality of data and the plurality of transformed data; and an operation of testing the performance of the model by calculating the test data set by using the model.
US11226885B1

Techniques for monitoring and optimizing Monte Carlo simulations within a provider network are described. A metric representing a similarity between a first data distribution associated with a Monte Carlo simulation template and a second data distribution associated with a data source is generated and evaluated against a condition based on a threshold. A new Monte Carlo simulation template is generated based on the Monte Carlo simulation template. A Monte Carlo simulation is run based on the new Monte Carlo simulation template using a plurality of virtual machines (VMs).
US11226883B2

The technology disclosed relates to implementing a virtual test platform (VTP) and running virtual test applications (VTAs) from an unsecured location. Using a phone home service, the VTP establishes a secure tunnel connection with a test controller. The VTP receives configuration information for a VTA from the test controller. If the VTA is not stored on the VTP, the VTP retrieves the VTA from a repository specified by the test controller. The configuration information from the test controller includes information needed for the VTP to set up a second secure tunnel. The VTP establishes the second secure tunnel and launches the VTA. The VTP relays information sent through the second tunnel to the VTA, and also relays messages from the VTA back to the test controller.
US11226882B2

Embodiments of the present disclosure provide a method and device for data center management. For example, there is provided a method, comprising: obtaining information of hardware used in a data center, the information of the hardware including identification information describing an identifiable attribute of the hardware; identifying the hardware by matching the identification information with a resource profile, the resource profile recording identifiable attributes of a plurality of types of hardware; and updating a record associated with the hardware in a database of the data center using the obtained information. Corresponding device and computer program product are also provided.
US11226880B2

A storage controller is configured to communicate with a host over a first storage area network. Data controlled via the storage controller is mirrored to another storage controller over a second storage area network. The storage controller receives a request from the host to provide read diagnostic parameters of the second storage area network. In response to receiving the request, the storage controller secures the read diagnostic parameters of the second storage area network. The storage controller transmits the read diagnostic parameters of the second storage area network to the host.
US11226878B1

A method for linking a selected portion of the data stored in a source database to a set of target database(s), determining that a crash of the source database has occurred, and restoring a latest database state of the source database, with the restoration including: triggering a remote recovery process, and restoring data of the selected portion in the source database from: copy(ies) of data entries stored in one, or more, target database(s) of the set of target database(s), and records from a recovery log file of the source database for data entries that have a later timestamp than corresponding copies of the data entry(ies) as stored in the target database(s) of the set of target database(s).
US11226875B2

A computer-implemented method, according to one embodiment, includes: storing information in a specified system memory location, attaching an external process to the specified system memory location in response to experiencing a system halt event, sending the information stored in the specified system memory location to a memory location associated with the external process, restarting the system in a recovery mode, retrieving the information from the external process, and using the retrieved information to restore the system to a state the system was in when the system halt event occurred. Other systems, methods, and computer program products are described in additional embodiments.
US11226873B2

In some embodiments, there is provided a method for operating a data management system. The method comprising certain operations including determining a schedule for backing up a first virtual machine, configuring a job scheduler to implement the schedule for backing up the first virtual machine, initiating a snapshot process for acquiring a snapshot of the first virtual machine, determining a type of snapshot to be stored, and determining whether a full image of the first virtual machine is required to be stored in order to store the snapshot of the first virtual machine.
US11226870B2

The disclosed computer-implemented method for marking application-consistent points-in-time may include intercepting, by an I/O filter, a write request from a guest virtual machine to a virtual machine disk and queueing the write request in an I/O filter queue. The method may include sending the write request to the virtual machine disk and receiving a write completion message from the virtual machine disk. The method may also include sending, in response to the write completion message, the write request to an I/O daemon, and queueing the write request in an I/O daemon queue. The method may further include sending the write completion message to the guest virtual machine, and sending the write request to a backup gateway such that the backup gateway mimics writes to the virtual machine disk. Various other methods, systems, and computer-readable media are also disclosed.
US11226862B1

An information handling system includes a processor, a BMC, and a logic device. The BMC boots in response to an AC power cycle event, provides a BMC ready signal in response to the boot, establishes the BMC as a root of trust for the processor in response to providing the BMC ready signal, and provides a processor boot indication to the processor in response to establishing the BMC as the root of trust. The processor boots to an operating system in response to the processor boot indication instead of in response to the AC power cycle. The logic device determines that the BMC failed to provide the BMC ready signal, determines that the BMC failed to boot in response to the AC power cycle and determining that the BMC failed to provide the BMC ready signal, and provides a power-on reset signal to the BMC in response to determining that the BMC failed to boot.
US11226859B2

Embodiments of the present disclosure include an error recovery method comprising detecting a computing error, restarting a first artificial intelligence processor of a plurality of artificial intelligence processors processing a data set, and loading a model in the artificial intelligence processor, wherein the model corresponds to a same model processed by the plurality of artificial intelligence processors during a previous processing iteration by the plurality of artificial intelligence processors on data from the data set.
US11226857B1

When the inspection unit corresponding to at least one disabled layer of a multilayer system is unavailable, a fault-eliminating device defines the at least one disabled layer and a target layer as a combined layer. The fault dependency of the target layer is the lowest among the fault dependency of the at least one available layer. The inspection unit of the at least one available layer is active and the fault dependency thereof is higher than the disabled layer. Then, the device makes the inspection unit and the fault symptom corresponding to the target layer correspond to the combined layer, so as to update a list of layers and a fault model. After that, the device determines a source of a fault from the layers according to the list of layers and the fault model, and performs a strategy of fault elimination corresponding to the source, to eliminate the fault.
US11226850B2

Aspects of the disclosure relate to scenario based multiple application display on-screen. An enterprise application management server may determine one or more of secondary applications associated with a primary application. The enterprise application management server may receive information associated with a triggering event that occurred in the primary application. The enterprise application management server may determine a particular secondary application from the one or more secondary applications based on the received information associated with the triggering event. Accordingly, enterprise application management server may cause to display the particular secondary application simultaneously with the primary application on the screen of the mobile device.
US11226839B2

A system is provided and includes a plurality of machines. The plurality of machines includes a first generation machine and a second generation machine. Each of the plurality of machines includes a machine version. The first generation machine executes a first virtual machine and a virtual architecture level. The second generation machine executes a second virtual machine and the virtual architecture level. The virtual architecture level provides a compatibility level for a complex interruptible instruction to the first and second virtual machines. The compatibility level is architected for a lowest common denominator machine version across the plurality of machines. The compatibility level includes a lowest common denominator indicator identifying the lowest common denominator machine version.
US11226830B2

Example implementations described herein are directed to a meta-data processing system that supports the creation and deployment of the Analytical Solution Modules in development of industrial analytics. The example implementations described herein can involve a first system configured to be directed to a data scientist for receiving flow and operator definitions to generate an analytics library, which is provided to a second system configured to be directed to a domain expert for applying the analytics library to generate analytics modules to be executed on data input to the second system.
US11226829B2

A system is reconfigured at runtime when triggers are issued in response to events taking place in the system. The triggers, which are issued on configuration entities, are correlated by transferring relations of the configuration entities to relations of the triggers to thereby identify related triggers. Elasticity rules are selected for the triggers, where the elasticity rules specify actions for resource allocation or deallocation at runtime. Selected actions of the selected elasticity rules for the related triggers are executed to reconfigure the system according to a set of action correlation meta-rules which provide an ordering of the actions.
US11226826B2

An apparatus to initialize a port includes a first input-output port to connect to a first device and a control unit to initialize all input-output ports of the apparatus when the apparatus is booted and to skip a power-on self-test (POST) of the first input-output port in response to a request to skip initialization of the first input-output port while the first input-output port is enabled.
US11226824B2

Circuitry comprises a prediction register storing a plurality of entries each having respective data values for association with one or more branch instructions; prediction circuitry to detect, using prediction data derived by a mapping function from the stored data values associated with a given branch instruction, whether or not a branch represented by the given branch instruction is predicted to be taken; update circuitry to modify the stored data values associated with the given branch instruction in dependence upon a resolution of whether the branch represented by the given branch instruction is taken or not; and control circuitry configured to selectively alter one or more of the data values other than data values associated with the given branch instruction.
US11226820B2

Systems and methods for managing context switches among threads in a processing system. A processor may perform a context switch between threads using separate context registers. A context switch allows a processor to switch from processing a thread that is waiting for data to one that is ready for additional processing. The processor includes control registers with entries which may indicate that an associated context is waiting for data from an external source.
US11226817B2

A set of dependence relationships in a set of program instructions is detected by a processor. The set of dependence relationships comprises a first load instruction to load a first data object and a second load instruction to load a second data object from a second address that is provided by address data within the first data object. The processor identifies a number of dependence instances in the set of dependence relationships and determines that the number is over a pattern threshold. The processor sends an enhanced load request to a memory controller. The enhanced load request comprises instructions to load the first data object from a first address on a physical page, locate address data in the first data object based on a memory offset, load the second data object from a second address in the address data, and transmit the first and second data objects to the processor.
US11226810B1

According to various example embodiments, a method of providing information by a computing device may include checking an input information set, receiving a first result information set corresponding to the input information set from a first server, receiving a second result information set corresponding to the input information set from a second server, and providing a third result information set including information on or regarding a difference between the first result information set and the second result information set. Various other example embodiments may be possible.
US11226802B2

A computing device can manage installation of an application program using an agent registered with an operating system. The agent can receive a notification in response to a user request to mount a disk image. The disk image can include the application program. The agent can generate a challenge-response to authenticate a current user. An action to take can be determined based on the challenge-response. The application program can be installed using privileges of the agent without changing privileges of an account for the current user.
US11226799B1

An embodiment includes requesting, by a compiler responsive to execution of a first code segment, a first profile dataset associated with the first code segment. The embodiment also includes executing, responsive to receiving an indication that the first profile dataset is not available, a querying process that searches other code segments based on specified criteria relating to an attribute of the first code segment. The embodiment also includes receiving a search result from the querying process, where the search result includes a second code segment. The embodiment also includes generating an extrapolated profile dataset based at least in part on the second code segment. The embodiment stores the extrapolated profile dataset in memory associated with the first code segment, and the compiler performs an optimization process on the first code segment using the extrapolated profile dataset.
US11226790B2

An arithmetic processing apparatus includes a delay-&-swap processing circuit configured to, upon detecting that an ending of a first packet received from an input side of a first channel and a beginning of a second packet with one-packet length and received from an input side of a second channel overlap in a same cycle, place an output side of the second channel into a delay state by delaying the output side of the second channel by one cycle, and a packet processing circuit configured to perform processing on packets which are output from the two channels by the delay-&-swap processing circuit.
US11226784B2

A method for operating an electronic device, comprising a plurality of displays, which includes a first body unit, a second body unit, a first display which is disposed on the other side of the first body unit and faces a first direction, a second display which is disposed on the other side of the second body unit and faces a second direction, and a processor configured to display on the first display a screen of a first application and, when the angle between the first body unit and the second body unit is smaller than a predetermined angle, display on the second display at least one of an image related to the first application, an image related to first content being executed by means of the first application and an image related to information obtained by means of the electronic device.
US11226782B1

Systems and methods relate generally to disambiguation of printing device characteristics. In an example method thereof, a printing app has user printing priority settings. A demographics data file is generated for a best fit emulation. A best match behavior is determined for a printing device of a plurality of printing devices. The printing device with the best match behavior is selected from the plurality of printing devices. In another method thereof an emulator is initialized. The initialization includes generating a demographics data file by the emulator. The emulator performs operations including: converting input data to device primitives in a printer language to generate print job data therefor; and providing the print job data as a print job to a job manager.
US11226779B2

A relay apparatus transmits information corresponding to a registered photograph to the print management apparatus based on an event being specified when the first option is selected, wherein the event that is specified is registration of the photograph in the Web service, and transmits an instruction to print the game contents to the print management apparatus when the second option is selected and a speech instruction in a predetermined phrase spoken toward the speech recognition terminal is specified.
US11226772B1

Power and/or current regulation in non-volatile memory systems is disclosed. Peak power/current usage may be reduced by staggering concurrent program operations in the different semiconductor dies. Each set of one or more semiconductor dies has an earliest permitted start time for its program operation, as well as a number of permitted backup start times. The permitted start times are unique for each set of one or more semiconductor dies. There may be a uniform gap or delay between each permitted start time. If a semiconductor die is busy with another memory operation at or after its earliest permitted start time, then the program operation is initiated or resumed at one of the permitted backup times. By having permitted backup times, the memory system need not poll each semiconductor die to determine whether the semiconductor die is ready/busy in order to determine when a die should start a program operation.
US11226762B2

An apparatus is described. The apparatus includes a memory controller having an interface to communicate with a memory. The memory controller comprising logic circuitry to specify one of multiple possible write values to the memory during a write operation with multiple bits of a command that is sent on a command address bus that emanates from the interface. The memory to write any one of the possible write values into its storage cells while the memory interface is in a power saving state wherein the specified one write value is not articulated by the memory controller on a data bus of the interface as part of the write operation.
US11226759B2

Embodiments manage a lifecycle of distributed data objects from at least a first data fabric node. Embodiments receive a request from a publisher to anchor a scope. Embodiments anchor the scope to an anchor in the first data fabric node to generate an anchored scope, where the anchor includes a previously published first object and a corresponding first lifecycle and anchoring the scope includes registering interest in the first lifecycle of the anchor. Embodiments publish, by the first data fabric node, scope metadata corresponding to the anchored scope. Embodiments then receive a request from the publisher to publish a second object into the anchored scope to define an anchored object, the anchored object including the first lifecycle.
US11226756B2

Transferring data between a first storage device coupled to a host computing system and a second storage device coupled to the first storage device includes the first storage device receiving a command from the host computing system, the first storage device determining if the command is an out-of-band (OOB) storage command, and, if the command is an OOB storage command, the first storage device sending a command to the second storage device to cause data to be transferred directly between the first storage device and the second storage device independent of the host computing system. Transferring data between a first storage device coupled to a host computing system and a second storage device coupled to the first storage device may also include the first storage device emulating a host computing system in connection with communicating with the second storage device. The second storage device may be a tape emulation unit.
US11226755B1

A system includes a host controller and a solid state storage card coupled to the host controller. The solid state storage card comprises an interface to the host controller, processor core, volatile memory, and non-volatile memory. Upon receipt of a core dump triggering event, the processor core copies execution state data from a register of the processor core to a buffer in the volatile memory and writes core dump data of the buffer to the non-volatile memory. The host controller reads the core dump data from the solid state storage card's non-volatile memory through the interface.
US11226751B2

Example implementations relate to reconfiguring storage devices of a storage enclosure. An indication of a cable connection may be received at a first port of the storage enclosure. Storage devices of the storage enclosure may be in communication with a controller via a second port of the storage enclosure. Responsive to receiving the connection indication, the set of storage devices may be reconfigured and/or zoned such that each of a first subset of the set of storage devices is enabled to communicate to a controller via the first port. Similarly, the set of storage devices may be further reconfigured and/or zoned such that each of a second subset of the set of storage devices is enabled to communicate to the controller via the second port.
US11226742B2

A memory device includes memory cell array including a first and second plane and first and second caches. A controller is configured to output status information in response to a status read command. The status information indicating the states of the caches. The controller begins a first process in response to a command addressed to the first plane if the status information indicates the first and second caches are in the ready state, and begins a second process on the second plane according to a second command to the second plane if the status information indicates at least the second cache is in the ready state.
US11226725B1

A machine learning feature studio comprises a user interface configured to allow a user to define features associated with an entity. The features are calculated using historical or real-time data stored in an event store and associated with the entity. Visualizations and values of the calculated feature are displayed in the user interface and the user may interact with the features, such as to edit and compare them. The user commits the features to the project associated with a machine learning model and selects to export the project. Feature vectors may are calculated using the committed features and are exported to a production environment.
US11226722B2

This application discloses an information interaction method and apparatus, a storage medium, and an electronic apparatus. The method includes obtaining a first target operation instruction in a VR scenario; selecting and displaying a first virtual operation panel corresponding to the first target operation instruction from a plurality of virtual operation panels in the VR scenario, wherein the plurality of virtual operation panels are displayed mutually independently, and are respectively configured to display different interactive objects. The method may further include obtaining an interactive operation instruction generated by an interactive operation performed by an interactive device on a target interactive object displayed in the first virtual operation panel, the interactive device being associated with the VR scenario; and in response executing a target event corresponding to the target interactive object in the VR scenario. These solutions resolve the technical problem of low information interaction flexibility in the related technology.
US11226720B1

In various embodiments, the disclosed systems and methods may receive documents, analyze the documents, categorize portions of the analyzed documents, and present the images of the documents and at least a portion of the categories. The analysis may include identification of categories and the presentation may include indicia of the portion of the image of the document related to the category. The systems and methods disclosed may allow querying and/or reporting of a plurality of documents to facilitate processing.
US11226715B2

One embodiment provides a method, including: receiving, at an information handling device, an indication to display an element; identifying, using a processor, a universal size designation for the element; and displaying, on a display associated with the information handling device, the element at a size associated with the universal size designation and irrespective of a screen scaling factor associated with the display. Other aspects are described and claimed.
US11226714B2

Systems, apparatuses, interfaces, and methods for visualizing time progressions in VR/AR/MR/XR environments, wherein the systems include a processing unit or a processor, a display device, and at least one VR/AR/MR/XR input device, wherein the systems, apparatuses, interfaces, and methods display projects or structures that have tasks, goals, targets, and/or events that have or will occur in a given time sequence along a time line, wherein the systems and methods also display a selection and control object and a temporal direction and speed control object.
US11226698B2

A method for detecting, by a force sensing circuit within an electronic device, a change in force applied to a surface of the electronic device. The method includes correlating the change in the force applied to the surface to a functional change of at least one setting of the electronic device. The method further includes identifying when a detected change is a first change of the change in force, which corresponds to a trigger that activates at least one of a plurality of sensing devices within the force sensing circuit to monitor for a subsequent change in the force. In response to detecting the subsequent change of the change in force, the method includes adjusting the at least one setting of the electronic device based on the subsequent change of the force.
US11226696B2

A display device includes a display panel that includes a flat part and a protruding part adjacent to one side of the flat part, a touch panel disposed on the display panel, a touch connection circuit board disposed at one side of the touch panel and electrically connected to the touch panel, and a protective layer disposed on one surface of the touch connection circuit board and that overlaps the protruding part. The touch connection circuit board includes a base film, a first dummy pattern disposed on the base film and adjacent to one edge of the base film, a second dummy pattern disposed on the base film and adjacent to an other edge of the base film, and a line pattern section disposed between the first and second dummy patterns. The protective layer covers the line pattern section between the first and second dummy patterns.
US11226690B2

Systems and methods for guiding a user with a haptic mouse are described. In an illustrative, non-limiting embodiment, an Information Handling System (IHS) may include a processor and a memory coupled to the processor, the memory having instructions stored thereon that, upon execution by the processor, cause the IHS to: detect a behavior of a pointer or cursor, where the pointer or cursor is controlled by a user via a peripheral device; and cause the peripheral device to provide a haptic response to the user, where the haptic response is selected to encourage, discourage, or highlight the behavior.
US11226689B2

A display system includes a display device, and an input device. The input device operates the display device, having a movement detection unit that include a sensor which detects a first movement that is circumferential around an axis and a second movement that is perpendicular the axis. The display device includes a first area in which characters are arranged and second area in which character string is displayed. A character that configures of the character string is selected from the first area according to the first movement and the second movement.
US11226686B2

An aspect provides a method, including: capturing, using a gesture input component of an information handling device, a user gesture input; processing, using a processor, the captured user gesture input to extract one or more features; comparing, using a processor, the one or more extracted features of the user gesture input to a predetermined gesture input; determining, using a processor, that a confidence level calculated based on the comparing exceeds a lower similarity threshold but does not exceed a higher similarity threshold; and performing an action selected from the group consisting of communicating with the user, and adjusting the gesture input component. Other aspects are described and claimed.
US11226682B2

A lens for eye tracking applications is described. The lens comprises a first protective layer with a first surface, arranged to face towards the eye to be tracked when the lens is used for eye tracking. The lens is characterized in that the lens further comprises a supporting layer and a second protective layer with a second surface, arranged to face away from the eye to be tracked when the lens is used for eye tracking. The supporting layer is arranged between the first protective layer and the second protective layer, and the supporting layer comprises at least a first opening between the first protective layer and the second protective layer. At least one electrical component arranged extending through the first opening.
US11226677B2

A Full-Body Inverse Kinematic (FBIK) module for use in tracking a user in a virtual reality (VR) environment. The FBIK module has an enclosure containing a power source, a plurality of active tags with lights for use by a motion tracking system to track the user, and a controller that flashes the lights in distinct patters to identify the user of the FBIK module.
US11226676B2

Disclosed is a controller for sensing deformation. Transmit antennas are located on a first structure and transmit signals. Receive antennas are located on a second structure and receive signals. Received signals are processed to determine an amount of deformation. The amount of deformation that occurs may then be correlated to the position of a hand or the location of another body part.
US11226674B2

An enhanced reality system, in an example, includes an input device, the input device including a first arm and a second arm configured to be held together by a user; a sensor to sense, at least, a relative position of at least a portion of the first and second arms; wherein sensing, at least, the relative position of the first and second arms comprises a haptic retargeting process that simulates a touching of ends of the first and second arms to the outer surface of a virtual object presented in the enhanced reality environment.
US11226671B2

An apparatus includes a power management integrated circuit (PMIC) and a power translator component coupled to the PMIC. The power translator component supplies power to the PMIC. The power translator component can further receive, from the PMIC, an indication that the PMIC has experienced a thermal event and responsive to receipt of the indication that the PMIC has experienced the thermal event, prevent powering of the PMIC.
US11226665B2

A system may include a plurality of power supply units and a management device communicatively coupled to the plurality of power supply units and configured to determine a minimum number of power supplies required to support a maximum peak power budget for components of the system, determine a minimum number of power supplies required to support a minimum peak power budget for components of the system, and reduce a throttle threshold of a number of healthy power supplies of the system at which a fast throttling of the components of the system will occur if the minimum number of power supplies required to support the maximum peak power budget is equal to the minimum number of power supplies required to support the minimum peak power budget.
US11226659B2

An electronic device includes a host, a display, a sliding plate, and a keyboard. The host has an operating surface. The display is pivoted to the host. The sliding plate is slidably disposed in the host, where the display is mechanically coupled to the sliding plate, and the sliding plate includes a plat portion and a recess portion that are arranged side by side. The keyboard is integrated to the host. The keyboard includes a key structure, where the key structure includes a key cap and a reciprocating element, and the key cap is exposed from the operating surface of the host. The reciprocating element is disposed between the key cap and the sliding plate and has a first end connected to the key cap and a second end contacting the sliding plate. The second end is located on a sliding path of the plat portion and the recess portion.
US11226656B2

The present disclosure provides a computer, including: a display component, having a display surface; a main body, including a central processor unit and having a reference surface; and a connector component, configured to connect the display component and the main body and to maintain a relative position of the display component and the main body to be at least in a first state and a second state. In the first state, a first angle is between the display surface and the reference surface; in the second state, a second angle is between the display surface and the reference surface, the first angle is different from the second angle, and the second angle is not zero; and in the first state and in the second state, the main body is located on a side of the display component facing away from the display surface.
US11226634B2

A route examination system includes a thermographic camera configured to be logically or mechanically coupled with a vehicle that travels along a route. The thermographic camera is also configured to sense infrared radiation emitted or reflected from the route and to generate a sensed thermal signature representative of the infrared radiation that is sensed. The system also includes a computer readable memory device configured to store a designated thermal signature representative of infrared radiation emitted from a segment of the route that is not damaged. The system also includes an analysis processor configured to determine a condition of a first portion of the route relative to other portions of the route at least in part by comparing the sensed thermal signature and the designated thermal signature.
US11226626B1

The technology relates to detecting a person directing traffic. For instance, a first vehicle may be controlled in an autonomous driving mode. Sensor data is received from a perception system of the first vehicle, the sensor data identifying a person. Behavior of the person is observed using the sensor data. The observed behavior of the person and the observed behavior of a second vehicle are used to determine a likelihood value indicative of whether the person is directing traffic. The first vehicle is maneuvered in the autonomous driving mode based on the determined likelihood value.
US11226623B2

The technology relates to determining whether a vehicle operating in an autonomous driving mode is experiencing an anomalous condition, for instance due to a loss of tire pressure, a mechanical failure, or a shift or loss of cargo. The actual current pose of the vehicle is compared to an expected pose of the vehicle, where the expected pose is based on a model of the vehicle. If a pose discrepancy is identified, the anomalous condition is determined from information associated with the pose discrepancy. The vehicle is then able to take corrective action based on the nature of the anomalous condition. The corrective action may include making a real-time driving change, modifying a planned route, alerting a remote operations center, or communicating with one or more other vehicles.
US11226622B2

A system for generating at least a second trajectory for a first route section of a road comprises a first interface for receiving first data representing at least a first trajectory. The first data were recorded during travel on the first route section by at least one vehicle controlled by a human driver. The first interface is additionally configured to receive second data representing ambient conditions at the time of recording of the first trajectory, and to receive third data representing vehicle-related features present during the recording of the first trajectory. The system additionally comprises a first data processing module that performs clustering of multiple first trajectories based on associated second data and/or third data, a database for retrievably storing the results of the clustering, and a second interface for receiving a request for the transmission of a second trajectory and for corresponding transmission of the requested second trajectory.
US11226621B2

Embodiments included herein are directed towards a robotic system and method. Embodiments may include a transportation mechanism having at least three legs and a computing device configured to receive a plurality of optimization components. Each optimization component may include a plurality of variables and the computing device may be further configured to perform a randomized simulation based upon, at least in part, each of the plurality of optimization components. The computing device may be further configured to provide one or more results of the randomized simulation to the transportation mechanism to enable locomotion via the at least three legs.
US11226620B2

Presented are automated driving systems for executing intelligent vehicle operations in mixed-mu road conditions, methods for making/using such systems, and vehicles with enhanced headway control for transitional surface friction conditions. A method for executing an automated driving operation includes a vehicle controller receiving sensor signals indicative of road surface conditions of adjoining road segments, and determining, based on these sensor signals, road friction values for the road segments. The controller determines whether the road friction value is increasing or decreasing, and if a difference between the road friction values is greater than a calibrated minimum differential. Responsive to the friction difference being greater than the calibrated minimum differential and the road friction value decreasing, the vehicle controller executes a first vehicle control action. Conversely, if the friction difference is greater than the calibrated minimum but the road friction value is increasing, the controller responsively executes a second vehicle control action.
US11226614B2

A system for monitoring industrial processes using an evolving set of iso-functional smart nodes, for a distributed mesh network, each node comprising a Linux or Linux-compatible computer hardware architecture and a software stack. Each node receives an execute statement from a program hosted by another node in the mesh and, by execution on the computer hardware architecture of each node, the program is responsible for: two-way communication with other nodes or a central platform (Big Data Management), control of sensors or programmable automatons for monitoring a process or actuators, acquisition and logging of data from the latter, formatting of data and decentralized calculations, the central platform allowing the acquisition, management and storing of a data lake and comprising nodes for synchronous or asynchronous communication with the distributed mesh network.
US11226612B2

Provided is a product manufacturing system including: a manufacture control apparatus configured to hold manufacturing data on a product; a virtual manufacturing apparatus configured to virtually manufacture the product by simulation, based on the manufacturing data on the product in the manufacture control apparatus; a physical manufacturing apparatus configured to physically manufacture the product based on the manufacturing data in the manufacture control apparatus; an abnormality determination unit configured to determine whether there is an abnormality in the virtual manufacture of the product by the virtual manufacturing apparatus. When it is determined there is no abnormality from the virtual manufacture of the product, the physical manufacturing apparatus physically manufactures the product.
US11226609B2

A numerical controller capable of setting the execution order among the commands of an NC program executes at least one NC program to control a plurality of paths. The NC program includes an order setting command by which the execution order can be set among commands for controlling each of the plurality of paths. The numerical controller includes at least one command analysis unit that reads and interprets a command included in the NC program, and when execution order of the command is set by the order setting command, outputs command data to which the execution order is added, and at least one command executor that executes command processing of each path in accordance with the execution order based on the command data that is output by the command analysis unit and to which the execution order is added.
US11226608B2

A system for machining a workpiece, comprising a hand-held power tool having a drive motor, a tool holder, which can be driven by the drive motor, for a working tool for machining the workpiece, and a guide element with a guide surface for guiding the hand-held power tool on the workpiece, having a marker detection device for detecting coordinate data of at least one workpiece marker of the workpiece, wherein the hand-held power tool has guide means for guiding the working tool along the workpiece according to the coordinate data of the at least one workpiece marker. The marker detection device has an optical and/or mechanical reference which can be positioned on and/or directly next to the at least one workpiece marker. The marker detection device is designed for determining the coordinate data of the at least one workpiece marker relative to an at least two-dimensional coordinates system which is independent from the workpiece marker and the guide means of the hand-held power tool are designed to guide the working tool relative to the at least two-dimensional coordinates system in a working area which is geometrically defined by working area data determined based on the coordinate data of the at least one workpiece marker.
US11226603B2

An automation system for process automation including at least one automation device which has at least one fieldbus interface for connection to a bus for transmitting process data, an arithmetic unit, a digital data memory and a data interface for transmitting program-flow-related event data; and an analysis device connected to the at least one automation device. The automation device is set up to run one or more computer programs with the aid of the arithmetic unit and to capture program flow events occurring during the running of the at least one computer program and to store them together with current time information as program-flow-related event data in the digital data memory, and wherein the arithmetic unit of the automation device is set up to continuously send the program-flow-related event data stored in the digital data memory to the analysis device connected via the data interface.
US11226598B2

A building system includes one or more storage devices having instructions stored thereon that, when executed by one or more processors, cause the one or more processors to receive an unstructured user question from a user device of a user and query a graph database based on the unstructured user question to extract context associated with the unstructured user question from contextual information of a building stored by the graph database, wherein the graph database stores the contextual information of the building through nodes and edges between the nodes, wherein the nodes represent equipment, spaces, people, and events associated building and the edges represent relationships between the equipment, spaces, people, and events. The instructions further cause the one or more processors to retrieve data from one or more data sources based on the context and compose a presentation based on the retrieved data.
US11226597B2

A method for interacting with a building management system (BMS) using intelligent software agents. The method includes receiving a user request from a multi-input device configured to accept vocal and textual inputs, and contextualizing the user request for a space and/or place and a corresponding user. The method further includes constructing a user skill level from the user request, and activating a customized BMS optimization process, the customized BMS optimization process determined by the intelligent software agents from the user skill level, the user request, and the space and/or place.
US11226595B2

A coupling system for a chronograph mechanism is presented. The system can include an input wheel intended to be driven by a drive member; an output wheel intended to drive at least one display member; an intermediate wheel continuously kinematically connected to the input wheel or the output wheel, where the intermediate wheel changes between a coupled state where the input wheel is kinematically connected to the output wheel and an uncoupled state where the kinematic connection is broken. The system also includes a first friction wheel constrained to rotate with the intermediate wheel and a second friction wheel constrained to rotate with either the input wheel and the output wheel; a first safety wheel constrained to rotate with said intermediate wheel that includes a first set of safety teeth; and a second safety wheel constrained to rotate with the second wheel that includes a second set of safety teeth.
US11226591B2

In a method for forming a holographic image, light is provided to a flat-panel holographic video display that includes waveguide elements that each have a light-guiding substrate and an array of transducers configured to produce a diffraction grating comprising surface acoustic waves. The grating causes the waveguide to outcouple light, focusing it to, or producing wavefront curvatures consistent with it having emanated from, one or more points, in order to form a holographic image. The transducer array may include a large number of densely packed, vertically-adjacent transducers for each hogel for full parallax or may include a small number of vertically-adjacent transducers and a cylindrical optical element for each hogel. The display may be edge-illuminated by a collinear multicolor source. The substrate exit face may have nanopatterned areas alternated with flat areas in order to create regions of optimal internal reflection next to regions of low reflection.
US11226590B2

Provided are holographic displays and operating methods of the holographic display. The holographic display includes a backlight portion configured to emit light for displaying an image; a deflector configured to control a direction at which the image is displayed; a lens portion configured to control a location where the image to be displayed is formed to match a location that satisfies a diffraction condition; and a panel portion configured to display a 3D image by combining the image to be displayed with an interference pattern generated with respect to an overlapped hologram.
US11226587B2

An image forming apparatus includes a housing, a conveying member not used in simplex printing, a duct, a blower, and control circuitry. The duct includes an intake and an opening. The intake is disposed at a first end of the duct. The intake sucks air from outside of the image forming apparatus. The opening is disposed at a second end of the duct different from the first end of the duct. The duct is disposed opposite the conveying member. The blower is disposed in the duct. The blower blows air sucked from the intake to the conveying member through the opening. The control circuitry controls the blower to blow air to the conveying member at least in the simplex printing.
US11226583B2

An image forming apparatus is provided. The image forming apparatus includes a main body frame, a developer cartridge detachably mounted on the main body frame, a driving gear deployed on one side of the main body frame to rotate in a first direction to drive the developer cartridge, and a locking member deployed between the driving gear and the developer cartridge to fix the developer cartridge in a locking position in which the developer cartridge is mounted on the main body frame, wherein the locking member is to move the developer cartridge to an unlocking position in which the developer cartridge is separated from the main body frame by a rotation of the driving gear in a second direction opposite to the first direction.
US11226578B2

An image forming apparatus includes: a first gear train including a first clutch; a second gear train including a second clutch; a third gear train including a third clutch; a fourth gear train including a fourth clutch; a motor including an output shaft; an output gear rotatable with the output shaft; a fifth gear train connected to the first and second clutches; and a sixth gear train connected to the third and fourth clutches. The first clutch engages transmission of a driving force to a first developing unit, the second clutch engages transmission of a driving force to a second developing unit, the third clutch engages transmission of a driving force to a third developing unit, and the fourth clutch engages transmission of a driving force to a fourth developing unit. The fifth and sixth gear trains are connected to the output gear independently from each other.
US11226576B1

An image forming device includes an image forming unit, a fuser, a memory, and a control circuit. The image forming unit forms an image on a recording medium with a decolorable toner based on image data. The decolorable toner decolorizes at a first temperature and does not decolorize at a second temperature that is lower than the first temperature. The fuser has a plurality of regions extending in a direction orthogonal to a direction of conveyance of the recording medium. The fuser generates heat in each of the plurality of regions to fuse the image onto the recording medium. The memory stores a correspondence between the plurality of regions and positions of a plurality of areas positioned along a main scanning direction in the image data. The control circuit changes the correspondence based on a degree of color development or decolorization of the image.
US11226567B2

Methods and associated apparatus for reconstructing a free-form geometry of a substrate, the method including: positioning the substrate on a substrate holder configured to retain the substrate under a retaining force that deforms the substrate from its free-form geometry; measuring a height map of the deformed substrate; and reconstructing the free-form geometry of the deformed substrate based on an expected deformation of the substrate by the retaining force and the measured height map.
US11226559B2

Provided herein is a method of forming a three-dimensional object in which the polymerizable liquid includes a mixture of (i) a light polymerizable first component, and (ii) a heat polymerizable second component; the heat polymerizable second component comprising (i) a first blocked reactive constituent that is blocked with a volatile blocking group, and optionally (ii) a curative. Upon heating a formed three-dimensional intermediate sufficiently, the volatile blocking group is cleaved and vaporizes out of the three-dimensional intermediate, to form the three-dimensional object. Also provided is a three-dimensional object produced by the method. Further provided is a polymerizable liquid composition useful for carrying out the method, and prepolymers and monomers useful for the polymerizable liquid composition.
US11226555B2

Embodiments provided herein provide methods for preparing patterned neutral layers using photolithography, and structures prepared using the same. A method of preparing a structure may include disposing a film over a surface of a substrate, and removing plurality of elongated trenches from the film so as to define a plurality of spaced lines. A neutral layer may be disposed over the outer surface of each line, and may include a neutral group attached to the outer surface of that line via a covalent bond or a hydrogen bond. The surface of the substrate between the lines may be substantially free of the neutral layer.
US11226540B2

A vehicular component shield providing a base plate with an aperture, wherein a shield surface extends from the base plate and circumscribes the aperture. The shield surface has an upper shield surface extending to a downwardly tapered moisture accumulation surface which in turn communicates to a moisture drip point. The distal surfaces of the remaining portion of the shield surface have a plurality of airfoil deflection surfaces defined by a non-zero or non-linear slope or gradient relative to the y-z plane of the base plate, wherein the plurality of airfoil deflection surfaces slope inward toward the aperture relative to the x-y plane of the base plate.
US11226536B2

A wavelength conversion system including: A. a first nonlinear optical crystal to which first pulsed laser light having a first polarization state and a first wavelength and second pulsed laser light having a second polarization state and a second wavelength are inputted and which is configured to output in response to the input the second pulsed laser light and first sum frequency light having the second polarization state and a third wavelength produced by sum frequency mixing of the first wavelength with the second wavelength; and B. a second nonlinear optical crystal to which the first sum frequency light and the second pulsed laser light outputted from the first nonlinear optical crystal are inputted and which is configured to output in response to the input third pulsed laser light having a fourth wavelength.
US11226529B2

A liquid crystal display device includes an active matrix substrate, a counter substrate, and a liquid crystal layer. The active matrix substrate includes a top gate type oxide semiconductor TFT a plurality of gate wiring lines a plurality of source and an interlayer insulating layer The counter substrate includes a plurality of columnar spacers provided on a second substrate. Each columnar spacer is disposed in an intersecting region where the gate wiring line and the source wiring line intersect. A front face of the active matrix substrate on the liquid crystal layer side includes a plurality of first ridges overlapping the plurality of gate wiring lines and a plurality of second ridges overlapping the plurality of source wiring lines.
US11226520B2

A display substrate includes: a plurality of sub-pixel regions at a first base substrate, each of the plurality of sub-pixel regions including a light-blocking region and aperture regions located at opposing sides of the light-blocking region; and a first transparent electrode and a second transparent electrode within each of the plurality of sub-pixel regions, configured to drive a liquid crystal layer; wherein the first transparent electrode includes a first electrode unit located inside the light-blocking region and including a plurality of first sub-electrodes, wherein each of the plurality of first sub-electrodes are separated from two adjacent first sub-electrodes by a separation distance; and wherein the separation distance between two adjacent first sub-electrodes nearest to a center line of the light-blocking region is smaller than the separation distance between two adjacent first sub-electrodes nearest to an edge of the light-blocking region.
US11226517B2

A display device with less light leakage and excellent contrast is provided. A display device having a high aperture ratio and including a large-capacitance capacitor is provided. A display device in which wiring delay due to parasitic capacitance is reduced is provided. A display device includes a transistor over a substrate, a pixel electrode connected to the transistor, a signal line electrically connected to the transistor, a scan line electrically connected to the transistor and intersecting with the signal line, and a common electrode overlapping with the pixel electrode and the signal line with an insulating film provided therebetween. The common electrode includes stripe regions extending in a direction intersecting with the signal line.
US11226514B2

A display panel includes a light guide plate, a substrate, a reflector and a liquid crystal layer. A refractive index of the liquid crystal layer can vary between a minimum liquid crystal refractive index and a maximum liquid crystal refractive index. One side, facing the substrate, of the light guide plate includes a light entry region, light at least partially enters the liquid crystal layer through the light entry region and is propagated towards the reflector. The maximum liquid crystal refractive index is greater than a refractive index of the reflector, and the minimum reflective index is not greater than the refractive index of the reflector. When the refractive index of the liquid crystal layer is greater than the reflective index of the reflector, the reflector reflects at least a part of light entering the liquid crystal layer from the light entry region to the light guide plate.
US11226511B2

Display panel and display device are provided. The display panel includes: a color film substrate, an array substrate, at least one light sensitive unit, and collimating apertures penetrating a portion of film layers of the color film substrate and the array substrate along a first direction perpendicular to the display panel. The collimating apertures and the at least one light sensitive unit are disposed in a one-to-one correspondence. The color film substrate includes a first substrate, a first light-blocking layer with first openings, and at least one second light-blocking layer with second openings. The array substrate includes a third light-blocking layer with third openings. An orthographic projection of each first opening, an orthographic projection of a corresponding second opening, and an orthographic projection of a corresponding third opening, at least partially overlap an orthographic projection of a corresponding collimating aperture on the first substrate.
US11226496B2

Various embodiments disclose a quasi progressive lens including a first optical zone capable of providing distance vision, a second optical zone capable of providing near vision and a transition zone connecting the first and second optical zones. Physical dimensions (e.g., length and width) of the transition zone are adjusted to increase the size of the second optical zone in comparison to progressive lenses and to reduce residual cylinder power and aberrations along the convergence path in comparison to bifocal lenses.
US11226485B2

An image projection device includes an image generation unit configured to generate a projection image; a magnifying optical system configured to magnify the projection image generated by the image generation unit and project the magnified projection image onto a projection plane; and an enclosure having an inner wall surface and being configured to accommodate the image generation unit and the magnifying optical system. The inner wall surface of the enclosure is disposed avoiding an area where converging magnification of converged incident light exceeds 15 times, the converged incident light resulting from incident light incident from outside of the enclosure onto the magnifying optical system being propagated in a direction opposite to the projection image.
US11226483B2

In various embodiments, a pancake lens block including a shaped reflective polarizer is described. In an embodiment, the shaped reflective polarizer may include an optical element that may be configured to transmit at least a portion of light from a light source. Further, the shaped reflective polarizer may include a wire-grid polarizer that comprises (i) a bolstering substrate, (ii) a wire-grid substrate coupled to the bolstering substrate, and (iii) wire-grids disposed on the wire-grid substrate. The shaped reflective polarizer may be spaced from the optical element by a distance, which may include a cavity filled with a material (such as air or a nanovoided material).
US11226479B2

A system for high resolution multiphoton excitation microscopy is described herein. In one embodiment, the system may include an electrowetting on dielectric (EWOD) prism optically coupled to an excitation source, the EWOD prism adapted or configured to: receive a light beam from the excitation source, and project the received light beam onto a sample plane based on a tunable transmission angle of the EWOD prism, and a fluorescence imaging microscope adapted or configured to: receive a fluorescence signal from the sample plane based on the projected light beam, and relay the fluorescence signal from the sample plane to a set of detectors.
US11226475B2

The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
US11226473B2

An optical imaging system includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an eighth lens, sequentially arranged from an object side optical imaging system, and a refractive index of at least one of the lenses is 1.67 or greater.
US11226472B2

An optical imaging module includes six lens elements, the six lens elements being, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element has negative refractive power. The second lens element has an image-side surface being concave. The third lens element has an image-side surface being convex. The fourth lens element has positive refractive power. The fifth lens element with negative refractive power has an object-side surface being concave and an image-side surface being convex. The sixth lens element has an image-side surface being concave, wherein an object-side surface and the image-side surface of the sixth lens element are both aspheric, and the image-side surface of the sixth lens element includes at least one inflection point.
US11226459B2

Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
US11226458B2

In a pluggable optical module, to easily and compactly house an optical fiber for connecting optical components in a housing in which a plurality of optical components are mounted. A pluggable optical module includes a first optical fiber housing unit a second optical fiber housing unit, and a housing. The first optical fiber housing unit can house a first optical fiber connected to a first optical component. The second optical fiber housing unit can house a second optical fiber connected to a second optical component. The housing can house the first optical fiber housing unit and the second optical fiber housing unit. The pluggable optical module is configured to be capable of being inserted into and removed from an optical communication apparatus and the housing constitutes an outer shape of the pluggable optical module.
US11226455B2

A fiber optic adapter includes an adapter body defining a port leading to an alignment structure. The optical adapter also defines a platform disposed at the first port. The platform is recessed inwardly from an outer periphery of the adapter body. The platform includes latching members having catch surfaces. A fiber optic connector includes a connector plug body holding an optical fiber. The connector also includes a latching arm having a latching end that defines two rearwardly facing catch surfaces separated by a central webbing, which extends along a length of the latching arm. The rearwardly facing catch surfaces align with the catch surfaces of the latching members when the fiber optic connector is received at the fiber optic adapter.
US11226452B2

A dual polarity optical fiber adaptor that can accommodate and mate with optical fiber connectors with dual polarity is provided. In one example, a fiber optic adaptor module includes a housing having a top wall, a bottom wall, a first sidewall, and a second sidewall connecting the top wall and the bottom wall, the top and bottom walls and the first and second sidewalls defining an interior region in the housing, a partition wall disposed in the interior region connected between the top wall and the bottom wall, the partition wall defining one or more adaptors in the housing each having a connector connection port formed therein, wherein the partition wall has a center portion sandwiched between a first portion and a second portion, and a protruding tab formed in the center portion protruding outward from a first surface and a second surface of the first and the second portion, wherein the first and the second surfaces are vertically aligned.
US11226447B2

A light source includes a light emitting element which emits light, and a light conversion layer which converts the light emitted from the light emitting element into white light and emits the white light, where the light conversion layer includes a resin and a quantum dot material mixed with the resin, and a red apex of a color region of the white light is positioned in a region of 0.65
US11226443B2

Provided is a piezoelectric color filter, wherein the piezoelectric color filter has piezoelectricity and comprises a photoluminescent material. The piezoelectric color filter may have a matrix of a first piezoelectric material being transparent or translucent; and quantum dots distributed in the matrix of the first piezoelectric material. Also provided are a piezoelectric color filter substrate, a display device, and a production method of the piezoelectric color filter.
US11226432B2

The invention provides a bright white refractory roofing granule, comprising a ceramic material formed from a substantially homogenous mixture of a ceramic-forming clay, sintering material, and optionally comprising silica particles, and other potential additives, said bright white refractory roofing granule having a total solar reflectance of at least 0.80 and a Hunter Color Lvalue of at least 85.0, together with processes for making and using the same.
US11226425B2

A method of compressing data from seismic waves using Gabor frames utilizes a plurality of geophones positioned within a region of interest. Each of the plurality of geophones is communicably coupled with at least one remote server. Thus, a plurality of reflected-seismic signals received through the plurality of geophones can be transmitted to the at least one remote server for analyzing and calculations. The plurality of reflected-seismic signals is converted into a set of Gabor frames, wherein the Gabor frames is generated via a plurality of prolate spheroidal wave functions (PSWF). A Gabor frame-generating calculation module utilizes the plurality of PSWF to generate the set of Gabor frames. A dual frame for each of the set of Gabor frames is derived and used for quantization purposes. Preferably, a tree structured vector quantization process is followed.
US11226424B2

The invention is a method applicable to oil and gas exploration and exploitation for automatically detecting geological objects belonging to a given type of geological object in a seismic image, on a basis of a priori probabilities of belonging to a type of geological object assigned to each of samples of the image to be interpreted. The image is transformed into seismic attributes applied beforehand, followed by a classification method. For each of the classes, an a posteriori probability of belonging to a type of geological object is determined for each of the samples of the class according to the a priori probabilities, of the class, of belonging, and according to a parameter α describing a confidence in the a priori probabilities of belonging. Based on the class of the sample, the determined a posteriori probability of belonging to a type of geological object is assigned for the samples of the class. The geological objects belonging to the type of geological object are detected based on determined of the a posteriori probabilities of belonging to the type of geological object for each of the samples of the image to be interpreted.
US11226422B2

An x-ray detector includes a sensor slice for directly converting x-ray radiation and a downstream read-out chip. Further, in at least one embodiment, a first amplifier stage is interconnected between the sensor slice and read-out chip.
US11226410B2

Method for determining a staggered pattern and interrogation mode pattern of an Secondary Surveillance Radar (SSR) is disclosed. The method enables a Passive SSR (PSSR) to work not only inside but also outside the SSR beam. When PSSR is in the wider beam of the SSR, multiple P2-pulses are detected as time-ordered sequence of P2-pulse intervals, from which a repeating sequence and further a stagger pattern is determined. The interrogation mode pattern is determined by comparing the staggered pattern with the interrogation signals. A transmit time of the P3-pulse is predicted based on the staggered pattern and the interrogation mode pattern. Corresponding system is also provided.
US11226408B2

A sensor includes: a transmission signal generator including N transmission antenna elements that respectively transmit N transmission signals to a predetermined range in which a living body is possibly present, where N is a natural number greater than or equal to 3; a receiver including M reception antenna elements that respectively receive N reception signals including one or more reflected signals, where M is a natural number greater than or equal to 3, the one or more reflected signals being one or more of the N transmission signals transmitted by the N transmission antenna elements that is reflected or scattered by the living body; circuitry; and memory. The circuitry estimates traveling of the living body, and/or the posture and/or action of the living body at the position of the living body.
US11226403B2

A chip-scale coherent lidar system includes a master oscillator integrated on a chip to simultaneously provide a signal for transmission and a local oscillator (LO) signal. The system also includes a beam steering device to direct an output signal obtained from the signal for transmission out of the system, and a combiner on the chip to combine the LO signal and a return signal resulting from a reflection of the output signal by a target. One or more photodetectors obtain a result of interference between the LO signal and the return signal to determine information about the target.
US11226399B2

A semiconductor package that is a proximity sensor includes a light transmitting die, a light receiving die, an ambient light sensor, a cap, and a substrate. The light receiving die and the light transmitting die are coupled to the substrate. The cap is coupled to the substrate forming a first chamber around the light transmitting die and a second chamber around the light receiving die. The cap further includes a recess with contact pads. The ambient light sensor is mounted within the recess of the cap and coupled to the contact pads. The cap includes electrical traces that are coupled to the contact pads within the recess coupling the ambient light sensor to the substrate. By utilizing a cap with a recess containing contact pads, a proximity sensor can be formed in a single semiconductor package all while maintaining a compact size and reducing the manufacturing costs of proximity sensors.
US11226394B2

A direction finding system for radio direction finding of a target emitting at least one signal is described. The direction finding system comprises at least one receiver unit, at least one antenna assigned to the at least one receiver unit and a central processing unit connected to the at least one receiver unit. The at least one receiver unit is configured to measure an absolute receiving power or a relative receiving power of the at least one signal emitted by the target. The central processing unit is configured to determine the power level of the respective power received by the at least one receiver unit. The central processing unit is further configured to determine interpolated constant power contours in order to locate the target. In addition, a method for radio direction finding of a target emitting electromagnetic at least one signal is described.
US11226392B1

Disclosed are embodiments for estimating risk associated with a user of a wireless device. In some embodiments, the risk relates to a risk of infection by a contagious disease. For example, in some embodiments, the contagious disease is Coronavirus 2019. In some embodiments, locations of multiple wireless devices are estimated based on signal strengths of signals associated with the devices. Neighboring devices are identified based on highest probability regions of the devices that are determined based on associated signals. A measure of proximity to other devices is then determined based on probabilities that each device is located in neighboring regions. The risk is then based on the measure of proximity. In some embodiments, a risk of a first user associated with a first wireless device is based, in part, on a risk of a second user within a proximity of the first user.
US11226387B2

Provided is a new scheme for applying a CS technology in a technology for imaging a target tissue based on a difference from a reference image or a control image. In this way, an imaging time is shortened. A measurement unit of an MRI apparatus executes a first imaging sequence and a second imaging sequence having different contrasts for a target, and measures a nuclear magnetic resonance signal from a subject in each of the imaging sequences. In the second imaging sequence, under-sampling is performed, and a nuclear magnetic resonance signal having a small number of samples is measured. The image processing unit restores measurement data including a nuclear magnetic resonance signal obtained by under-sampling using compressed sensing. At this time, data restoration including a term for minimizing an L1 norm is performed for a difference image between an image obtained by execution of the first imaging sequence and an image obtained by execution of the second imaging sequence.
US11226383B2

Artifacts caused by metallic needles used in MRI-guided procedures such as tumor biopsies significantly decrease the visibility of therapy targets and diminish the ability of the physician to accurately monitor and perform the procedure. As described in the present application, a needle including active shimming can self-compensate for these artifacts and significantly improve the visualization and monitoring of targeted tissue. The accuracy and overall outcomes of MRI-guided treatments can be significantly improved with the use of the needle.
US11226377B2

A method carries out a self-test of an electrical converter circuit, by use of a control device, proceeding from a known operating point at which a predetermined electrical operating variable has a predetermined starting value, a measurement cycle is begun by the converter circuit being operated. It is additionally provided that the time since the starting of the measurement cycle is detected, and the electrical operating variable and the time constitute two monitoring variables of the self-test. The measurement cycle is ended if one of the two monitoring variables satisfies an ending criterion. A test value is then formed from a measurement value of the other of the two monitoring variables at the end of the measurement cycle and a check is made to ascertain whether the test value lies outside a predetermined reference interval. If so an error signal is generated.
US11226373B2

This method for determining a process noise covariance matrix for tuning an observer of the state-of-charge of a battery of electrical accumulators includes the steps of: determining, for each operating point of a set of operating points of the battery, a value of at least one component (R0, Z1) of an electrical model of the battery; obtaining, for each of said values, a determination error (r(SOCk)) for said component; storing the values of said component and the determination errors; calculating the standard deviation (σ[r(SOC1 . . . p)]) for the determination errors for various operating points of the battery; and producing the covariance matrix (Q) on the basis of the calculated standard deviation.
US11226371B2

A test system for testing RF PCBs including an RF probe for interfacing an intermediate node of each RF PCB, an RF source providing an RF test signal, a reflectometer, and a test measurement system that makes a pass/fail determination of each RF PCB using a measured reflection coefficient. Each RF PCB includes an IC matching circuit and an antenna matching circuit coupled between an RFIC and an antenna, in which the intermediate RF node is between the matching circuits. The reflectometer outputs a measured reflection coefficient indicative of a comparison between a reflected RF signal and the RF test signal. The measured reflection coefficient may be corrected using error values based on a calibration procedure using a calibration kit with modified RF PCBs with known loads. The modified RF PCBs are measured with a network analyzer and the test system to calculate the error values used for production testing.
US11226370B1

Embodiments relate to a system, program product, and method for random generation of recoverable errors in the generated instruction stream for post-silicon validation testing. The intentional raising and handling of exceptions in post-silicon validation exercisers randomly creates recoverable errors in a generated instruction test stream. Multiple exceptions may be raised either in a single instruction or in multiple instructions, while the present instruction is permitted to fully execute. The errors responsible for raising the exceptions are automatically repaired.
US11226356B2

Provided is a shunt resistor including: a first terminal and a second terminal each made of an electrically conductive metal material and having a first plane, a second plane, and an outer peripheral surface around the planes; and a resistive body connected to the respective first planes and connecting the first terminal and the second terminal, the first planes of the first terminal and the second terminal opposing each other. A bonding area between the resistive body and the first planes is smaller than an area of the first planes. The first terminal and the second terminal each have a hole penetrating through from the first plane to the second plane. A voltage detection terminal is connected to opposing surface sides of the first terminal and the second terminal.
US11226354B1

A probe card device and a fence-like probe thereof are provided. The fence-like probe includes a stroke segment, a fan-out segment, and a testing segment. The stroke segment is in an elongated shape defining a longitudinal direction, and the stroke segment has two end portions and a plurality of penetrating slots that are arranged along a fan-out direction perpendicular to the longitudinal direction, so that the stroke segment is deformable to store an elastic force by being applied with a force. The fan-out segment and the testing segment are respectively connected to the two end portions of the stroke segment. The fan-out segment has a fixing point arranged away from the stroke segment, and the testing segment has an abutting point arranged away from the stroke segment. Along the fan-out direction, the fixing point is spaced apart from the abutting point by a fan-out distance.
US11226353B2

An electrical characterization and fault isolation probe can include a cable, a connector, and a coating over a portion of the cable. The cable can have a first conductor having a first impedance, a second conductor having a second impedance, and a dielectric surrounding the first conductor and electrically isolating the first conductor from the second conductor. The connector can physically couple to, and be in electrical communication with, the cable. The connector can include a first electrical communication pathway and a second electrical communication pathway. The first electrical communication pathway can be electrically isolated from the second electrical communication pathway. The first electrical communication pathway can be in electrical communication with the first conductor. The second electrical communication pathway can be in electrical communication with the second conductor. The connector can have a fifth impedance.
US11226350B2

Embodiments of the present disclosure provide a method and device for detecting a speed of an obstacle, a computer device, and a storage medium. The method includes: calculating at least two real-time speeds corresponding to the obstacle by using a multi-frame difference algorithm according to multi-frame data acquired by a sensor in a preset time window; calculating at least two speed statistic values corresponding to the obstacle according to the at least two real-time speeds; mapping each of the at least two speed statistic values to a corresponding static probability according to a mapping relationship between speed statistic values and static probabilities, to obtain at least two static probabilities; and fusing the at least two static probabilities to obtain a fused static probability of the obstacle, and determining the speed of the obstacle according to the fused static probability.
US11226348B2

A storage module for a laboratory automation system, a method of operating a laboratory automation system, and a laboratory automation system are presented. Items used by laboratory stations are stored centrally in a storage module and can be transported to the laboratory stations using a laboratory sample distribution system.
US11226345B2

Disclosed is an antibody which binds to olanzapine, which can be used to detect olanzapine in a sample such as in a competitive immunoassay method. The antibody can be used in a lateral flow assay device for point-of-care detection of olanzapine, including multiplex detection of aripiprazole, olanzapine, quetiapine, and risperidone in a single lateral flow assay device.
US11226341B2

Methods of diagnosing and treating disorders related to TH2 inhibition, including but not limited to asthma, are provided. Also provided are methods of selecting or identifying patients for treatment with certain therapeutic agents that are TH2 pathway inhibitors.
US11226339B2

Methods and systems for high-throughput Identification of receptor:ligand interactions are provided. Throughout this application various publications are referred to in parentheses. Full citations for these references may be found at the end of the specification. The disclosures of these publications, and all patents, patent application publications and books referred to herein, are hereby incorporated by reference in their entirety into the subject application to more fully describe the art to which the subject invention pertains.
US11226338B2

Methods for detection and quantitative measurement of proteins with a Coomassie Brilliant Blue Assay with improved sensitivity and maintaining high linearity over a broad measuring range are provided herein. In particular, a method of detecting a protein in a protein-containing sample is provided. The method includes providing a sample including a protein, a reagent including Coomassie Brilliant Blue and having a pH between 0.85 and 1.1, combining the sample and the reagent, and determining absorption at first and second wavelength to determine the amount of protein in the sample. The ratio of the absorption value at the first wavelength between about 580 to 620 nm to the absorption value at the second wavelength between about 520 to 370 nm is used in the spectral photometric determination of the amount of protein.
US11226334B2

[Problem] To provide a method for detecting high-risk prostate cancer, for the purpose of providing useful information, such as necessity of biopsy, to a test-positive patient in a PSA test. [Solution] The method for detecting high-risk prostate cancer according to the present invention comprises reacting a PSA contained in a sample composed of urine collected from a human body which is suspected to be suffering from prostate cancer with (1) a fucose α1→6 affinitive lectin which has a characteristic property that the lectin has affinity expressed by a binding constant of 1.0×104 M−1 or more (at 25° C.) for an α1→6 fucose sugar chain No. 405. The fucose α1→6 affinitive lectin is preferably (2) a fucose α1→6 specific lectin which has a characteristic property that the lectin has a binding constant of 1.0×104 M−1 or less (at 25° C.) for a sugar chain No. 003 that does not contain α1→6 fucose and a glycolipid-type sugar chain No. 909 that does not contain α1→6 fucose.
US11226324B2

An egg identification system for determining viability of an avian egg is provided. Such a system includes an emitter assembly configured to emit electromagnetic radiation having a predetermined wavelength toward an egg. A detector assembly is spaced-apart from the emitter assembly and configured to detect electromagnetic radiation transmitted through the egg. A light controlling assembly is positioned proximate to the emitter assembly. The light controlling assembly includes an absorbing layer configured to absorb electromagnetic radiation at the predetermined wavelength. The absorbing layer defines an opening through which electromagnetic radiation emitted from the emitter assembly is capable of passing therethrough toward the egg. A processor is configured to process an output signal of the detector assembly to determine viability of the egg. An associated method is also provided.
US11226323B2

A computer implemented method, computer system, and computer program product are provided for air-pollution emission source monitoring. To determine the air-pollution emission of a monitored area, location data and air pollution data are taken from sensor stations positioned along a boundary of the monitored area. The macroscale atmospheric data of a region, where the monitored area is located, is also received. A boundary pollutant distribution can be estimated based on the location data and the air pollution data. Horizontal diffusion and vertical diffusion of the monitored area can be estimated based on the boundary pollutant distribution and the macroscale atmospheric data. To determine an accurate amount of pollution contribution caused by a monitored area, a calculation based on the boundary pollutant distribution, the horizontal diffusion, and the vertical diffusion can be used.
US11226322B2

Gas analyzer and method for measuring nitrogen oxides in an exhaust gas, wherein to measure the nitrogen oxides, ozone is generated from oxygen, the exhaust gas is treated with the ozone generated to convert nitrogen monoxide within the exhaust gas into nitrogen dioxide, the nitrogen dioxide concentration in the treated exhaust gas is measured photometrically using a first light-emitting diode which emits with a central wavelength between 350 nm and 500 nm and output as the nitrogen oxide concentration in the exhaust gas, and the ozone concentration in the treated exhaust gas is measured photometrically using a second light-emitting diode which emits with a central wavelength between 250 nm and 265 nm, where generation of the ozone using the measured ozone concentration as an actual value is regulated to a prespecified setpoint value to enable reliable continuous measurement of nitrogen oxides in exhaust gases with a low outlay on equipment.
US11226316B2

A method of manufacturing a component having a flow path, wherein the method includes forming a high pressure resistant casing with a cavity therein, inserting a body of bioinert material into the cavity to thereby form a composite block, and further processing the composite block for at least partially forming the flow path defined by the component.
US11226315B2

Noise present in ultrasonic tests applied by an ultrasonic test system to test objects, e.g., production parts, is reduced to provide more accurate results and to reduce waste, e.g., by reducing the number of test objects inaccurately identified as faulty. To that end, a noise signature is obtained for an ultrasonic test applied by the ultrasonic test system to a known object having the same dimensions and the same material composition as the test objects. The noise present in the output of the ultrasonic test applied by the ultrasonic test system to one or more of the test objects is then reduced responsive to the obtained noise signature to improve the accuracy of the ultrasonic test.
US11226311B2

According to one implementation, an ultrasonic inspection system includes: a first inspection unit, a second inspection unit, and a signal processing system. The first inspection unit acquires a detection signal of a first ultrasonic wave in a first inspection section of an structural object, using a first ultrasonic transducer and a first ultrasonic sensor. The second inspection unit acquires a detection signal of a second ultrasonic wave in a second inspection section of the structural object, using a second ultrasonic transducer and a second ultrasonic sensor. The signal processing system obtains an index value representing inspection information of at least one of the first inspection section and the second inspection section, based on the detection signal of the first ultrasonic wave and the detection signal of the second ultrasonic wave.
US11226310B2

A mass spectrometer or ion mobility spectrometer is disclosed comprising: a first device for separating ions or molecules according to a physicochemical property (3); an ion mobility separation device (4) for receiving and separating at least some of said ions or ions derived from said molecules according to their ion mobility; a gas supply (6-10) connected to said ion mobility separation device (4) for supplying gas into said ion mobility separation device (4); and a control system (11) configured to adjust said gas supply (6-10) so as to change the composition of gas within the ion mobility separation device (4) as a function of time.
US11226294B2

A defect inspection apparatus generates a surface layer inspection image which is an image representing displacement of an inspection target in a measurement region based on an intensity pattern of interfered laser light. The defect inspection apparatus is configured to generate an appearance inspection image which is an image of an outer surface of the measurement region based on an intensity pattern of incoherent light.
US11226290B2

System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
US11226288B2

A device for measuring a matter flux, including: at least one first light source to emit a first light beam having a measurement wavelength corresponding to the absorption wavelength of an element of interest of the matter flux; an optical connector; and a light sensor to receive, via the optical connector: an attenuated beam resulting from a transmission of the first light beam through the matter flux; and a non-attenuated beam resulting from a transmission of the first light beam without passing through the matter flux. The light sensor is one-dimensional and the optical connector is positioned relative to the light sensor so that the center of the optical connector is aligned with the center of the light sensor, the non-attenuated beam is spectrally directed towards a first part of the light sensor and the attenuated beam is spectrally directed towards a second part of the light sensor.
Patent Agency Ranking